CONVECTION - GENERAL

CONVECTION

e WE HAVE SEEN THAT HEAT TRANSFER FROM A SOLID
TO A LIQUID IS GOVERNED BY NEWTON'S LAW OF
COOLING:

q,=hAt,—t,)

UP TO NOW, WE HAVE SUPPOSED THAT , THE CON-
VECTION HEAT TRANSFER COEFFICIENT, A, WAS
KNOWN.

THE OBJECTIVES OF THIS CHAPTER ARE:

» TO DISCUSS THE BASICS OF HEAT CONVECTION IN FLUIDS,
AND

-~ TO PRESENT METHODS TO PREDICT THE VALUE OF HEAT

TRANSFER COEFFICIENT.

CONVECTION IS THE TERM USED FOR HEAT TRANS-
FER IN A FLUID BECAUSE OF A COMBINATION OF:

» CONDUCTION DUE TO MOLECULAR INTERACTIONS, AND

» ENERGY TRANSPORT DUE TO THE MOTION OF THE FLUID
BULK.

THE MOTION OF THE FLUID BULK BRINGS THE HOT
REGIONS IN CONTACT WITH THE COLD REGIONS.

THE MOTION OF THE FLUID BULK MAY BE SUSTAIN-
ED:

» BY A THERMALLY INDUCED DENSITY GRADIENT (NATU-
RAL) CONVECTION, OR

-~ BY A PRESSURE DIFFERENCE CREATED BY A PUMP (FORCED
CONVECTION).
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CONVECTION - GENERAL

e IN BOTH CASES, THE DETERMINATION OF A
REQUIRES THE KNOWLEDGE OF TEMPERATURE
DISTRIBUTION IN THE FLUID FLOWING OVER THE
HEATED WALL.

e SINCE THE FLUID IN THE VICINITY OF THE SOLID
WALL IS PRACTICALLY MOTIONLESS, HEAT FLUX
FROM THE WALL IS GIVEN BY:

( ot
" =—k Rt
To f\ay)w
q;\: = hc(tw “tf) | -'
- —kf(at/ay)w
) t, —1t,

Temperature
distribution

Heated wall

Figure 4.1 Variation of the temperature in the fluid néct to the heated wall.
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CONVECTION - GENERAL

e ANALYTICAL DETERMINATION OF /i REQUIRES THE
SIMULTANEOUS SOLUTION OF:

- MASS
- MOMENTUM, AND
- ENERGY

CONSERVATION EQUATIONS.

e THE ANALYTICAL SOLUTION OF THESE EQUATIONS IS
VERY DIFFICULT AND IT IS ONLY POSSIBLE FOR VERY
SIMPLE CASES.
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CONVECTION - VISCOSITY

VISCOSITY

e THE NATURE OF VISCOSITY IS BEST UNDERSTOOD BY
CONSIDERING A LIQUID PLACED BETWEEN TWO
PLATES.

Fix wall
Figure 4.2 Shear stress applied to a fluid.

» THE LOWER PLATE IS AT REST.

» THE UPPER PLATE MOVES WITH A CONSTANT VELOCITY
UNDER THE EFFECT OF A FORCE F.

» THE DISTANCE BETWEEN THE PLATES IS SMALL.
» THE SURFACE AREA OF THE UPPER PLATE IS: A4.

e BECAUSE OF THE NON SLIP CONDITION ON THE
WALLS THE FLUID VELOCITY:

» AT THE LOWER PLATE IS ZERO,
» AT THE UPPER PLATE IS U.
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CONVECTION - VISCOSITY

e UNDER THESE CONDITIONS, A LINEAR VELOCITY DIS-
TRIBUTION DEVELOPS BETWEEN THE PLATES:

U
U=—y
e
e THE SLOPE:
du_U
dy e
e THE SHEAR STRESS:
F
T=—
A

e IFTHEFORCEF (or 1=F/A ) APPLIED TO THE UPPER
PLATE CHANGES (i.e., UPPER PLATE VELOCITY),du / dy
CHANGES AS:

A

T

=

-
du/ dy

Figure 4.3 t versus du/dy.
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CONVECTION - VISCOSITY

e WE SEE THAT:

e | IS CALLED " THE DYNAMIC VISCOSITY."

@ IN A MORE GENERAL WAY, CONSIDER A LAMINAR
FLOW OVER A PLANE WALL.

¢ THE VELOCITY DISTRIBUTION HAS THE FOLLOWING
FORM:

Figure 4.4 Velocity distribution next toa wall
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CONVECTION - VISCOSITY

THIS DISTRIBUTION IS NOT LINEAR.
e SELECT A PLANE SS PARALLEL TO THE WALL.

FLUID LAYERS ON EITHER SIDE OF SS§ EXPERIENCE A
SHEARING FORCE DUE TO THEIR RELATIVE MOTION.

THE SHEAR STRESS IS GIVEN BY:

A8

THE RATIO OF THE DYNAMIC VISCOSITY TO THE
SPECIFIC MASS:

vV=—

P

IS CALLED "KINEMATIC VISCOSITY."
UNITS:
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CONVECTION - VISCOSITY

PHYSICAL BASIS OF THE VISCOSITY
e CONSIDER ONE DIMENSIONAL LAMINAR FLOW OF A

DILUTE GAS ON A PLANE
A
Y
u J Velocity
profile
|
y nvmu(y — \)
A
f S u(y+2A
< .f YA | [ MY
\ 5 /1A
© i u(y—»)
—é— nvmu(y + A)
-
0 u

Figure 4.5 Flow of a dilute gas over a plane wall.

o u=1u(y)
& CONSIDER A SURFACE SSPARALLEL TO THE WALL.

e BECAUSE OF THE "RANDOM THERMAL VELOCITIES,"
GAS MOLECULES CROSS 55 SURFACE BOTH

» ABOVE, AND
» BELOW.
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CONVECTION - VISCOSITY

e AT THE LAST COLLISION BEFORE CROSSING THE
SURFACE SS EACH MOLECULE

» ACQUIRE THE FLOW VELOCITY (x) CORRESPONDING TO
THE HEIGHT AT WHICH THIS COLLISION TAKES PLACE.

SINCE THE FLOW VELOCITY ABOVE THE PLANE 5§ IS
GREATER THAN BELOW:

» MOLECULES CROSSING FROM ABOVE TRANSPORT A
GREATER MOMENTUM IN THE DIRECTION OF THE FLOW
ACROSS THE SURFACE THAN

» THAT TRANSPORTED BY THE MOLECULES CROSSING THE
SAME SURFACE FROM BELOW.

THE RESULT IS A NET MOMENTUM FLOW ACROSS THE
PLANE SS

» FROM THE REGION ABOVE
» TO THE REGION BELOW.

ACCORDING TO THE NEWTON'S SECOND LAW:

» THE MOMENTUM CHANGE IN THE REGION ABOVE (OR BE-
LOW) IS BALANCED BY THE "VISCOUS FORCE."

CONSEQUENTLY

» THE REGION ABOVE SS IS SUBMITTED TO A FORCE DUE TO
THE REGION BELOW ( —1 ), AND

» VICE VERSA( T ).
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CONVECTION - VISCOSITY

e BASED ON THE ABOVE DISCUSSION AN ESTIMATION
OF THE "DYNAMIC VISCOSITY" CAN BE DONE:

» IF THEY ARE n» MOLECULES PER UNIT VOLUME OF THE
DILUTE GAS, APPROXIMATELY:

- (1/3) HAVE AVERAGE VELOCITY ( vV ) PARALLEL TO
THE y-axis.

» FROM THESE MOLECULES:
- THE HALF ( % ) HAVE AN AVERAGE VELOCITY IN
THE DIRECTION OF y", AND

- THE OTHER HALF ( '—;- ) IN THE DIRECTION OF Y~ . |
» CONSEQUENTLY:

- % MOLECULES CROSS SS PER UNIT SURFACE AND

UNIT TIME FROM ABOVE TO BELOW, AND

- VICE VERSA.

» MOLECULES COMING FROM ABOVE SS UNDERGO THEIR
LAST COLLISION AT A DISTANCE EQUAL TO THE "MEAN
FREE PATH" A,

- THEIR FLOW VELOCITY IS: () + A.)

- THEIR MOMENTUM: mu( y+A)

» MOLECULES FROM BELOW:
- VELOCITY: u(y—A)

- MOMENTUM: mu( y—2A)

PAGE 4.10



CONVECTION - VISCOSITY

» MOMENTUM COMPONENT IN THE DIRECTION OF THE
FLOW THAT CROSSES THE SURFACE SS:

- FROM ABOVE TO BELOW:

—ém_f[mu(y +A)]

- FROM BELOW TO ABOVE:
1 _
—nv[mu(y — )]
6
» THE NET MOMENTUM TRANSFER IS:

én?m[u(y—l)—u(y+7t)]

» THE NET MOMENTUM TRANSFER SHOULD BE BALANCED
BY THE VISCOUS FORCE T .

r:-énvm[u(y—x)—u(ym)]
u(y+7\,)§u(y)+7tﬂ
‘jiy -
U
u(y—?t)zu(y)—?tg-—
Y Y
1 . du du
T=——NVMA—— = —li——
| dy dy
| B —lm_fm%
B
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CONVECTION - CONSERVATION EQS.- LAMINAR FLOWS

FLUID CONSERVATION EQUUATIONS - LAMINAR
FLOW

'OBJECTIVE:

DISCUSS THE BASIC ELEMENTS THAT ENTER IN THE ES-
TABLISHMENT OF THE CONSERVATION EQUATIONS FOR
AN INCOMPRESSIBLE FLOW.

e L.OCAL MASS CONSERVATION EQUATION

FLUID IS
INCOMPRESSIBLE

p = const.
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CONVECTION - CONSERVATION EQS.- LAMINAR FLOWS

e LOCAL MOMENTUM CONSERVATION EQUATION

—

V.pi ¥ -V.pl+V.o+pg

: diadic product of two
vectors.

- unit tensor.
: stress tensor, winowa

racceleration of the
gravity.

ow
w —+—+
Ox Jdy 0z )

Ox ay Oz J

du Ov Ow)
+—+

ox ay aZ J
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CONVECTION - CONSERVATION EQS.- LAMINAR FLOWS

X - COMPONENT

6u+u6u+vau+w@ __Qe+ 62u+ o’u +62u N
Ploe " “ox oy 0Oz ox "\ ax? oy* 0z PE.
y - COMPONENT

6v+u6v+vav+w6_v -—QE+ 62v+62v o' .\
P ot Ox Oy 0z H N PE,

z - COMPONENT

ot ox Oy + w__az

THESE EQUATIONS ARE KNOWN AS "NAVIER-STOKES"
EQUATIONS.,

.....
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CONVECTION - CONSERVATION EQS.- LAMINAR FLOWS

e LOCAL ENERGY CONSERVATION EQUATION

ENTHALPY
FORM

g"'=-kV.t

» KINETIC ENERGY
NEGLIGIBLE.
POTENTIAL ENERGY
NELIGIBLE.
c,.p,1,k, ARE CONS-
TANT,

PRESSURE DOESNOT
CHANGE WITH TIME:

NO ENERGY GENE-
RATION

0,=0

pc g+u§£+1’—a—t—+wat =k 6)21"+alt+62t +ud
Aot ox ay oz 1 ox? ay2 Py 2

WHERE

4

| ‘ou) (ov) (ow) ou ov) (ov ow) (ow ou)
o=21 — — =] |+ =+ | —F— ] | —+—
oy 0z oy 0x 0z Oy ox Oz
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CONVECTION - CONSERVATION EQS.- LAMINAR FLOWS

e THE SOLUTION OF THE ENERGY EQUATION IN CON-
JUNCTION WITH

- CONTINUITY EQUATION,
- NAVIER-STOKES (MOMENTUM) EQUATIONS, AND
- APPROPRIATE BOUNDARY CONDITIONS

YIELDS THE TEMPERATURE DISTRIBUTION IN THE
FLUID OVER THE HEATED WALL.

e FOR AN INCOMPRESSIBLE FLOW, THE UNKNOWNS |
ARE:

uv,w,p,t

o THERE ARE 5 EQUATIONS TO DETERMINE THESE
UNKNOWNS.

e ONCE THE TEMPERATURE DISTRIBUTION IN THE
FLUID WASHING THE HEATED WALL IS KNOWN, THE
CONVECTION HEAT TRANSFER COEFFICIENT IS DE-
TERMINED BY:

_ -k (at/0y),
t, —t,

h

c

e THE CONSERVATION EQUATIONS ARE NONLINEAR.
e NO GENERAL METHODS EXIST FOR THEIR SOLUTION.

e ANALYTICAL SOLUTIONS ARE LIMITED TO VERY SIM-
PLE CASES.
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CONVECTION - CONSERVATION EQS.- LAMINAR FLOWS

e FORTUNATELY, A LARGE NUMBER OF ENGINEERING
PROBLEMS CAN BE HANDLED:

» BY USING ONE DIMENSIONAL MODELS, AND

» EXPERIMENTALLY DETERMINED CONSTITUTIVE
EQUATIONS.

e THE SOLUTIONS CAN BE OBTAINED MORE EASILY.

- N
e THE ABOVE CONSERVATION EQUATIONS APPLY ONLY
TO LAMINAR FLOWS.

» IN A LAMINAR FLOW, FLUID PARTICLES FOLLOW WELL
DEFINED STEAMLINES.

» THE STREAMLINES REMAIN PARALLEL TO EACH OTHER
AND THEY ARE SMOOTH.

» HEAT AND MOMENTUM ARE TRANSFERRED ACROSS THE
STEAMLINES ONLY BY MOLECULAR DIFFUSION.

» LAMINAR FLOWS EXIST AT LOW VELOCITIES.
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CONVECTION - CONSERVATION EQS.- TURBULENT FLOW

TURBULENT FLOW
e IN TURBULENT FLOW, THE FLOW PARAMETERS:

- VELOCITY
- PRESSURE
- TEMPERATURE

FLUCTUATE ABOUT A MEAN VALUE.
A

U

DR N

N

-

time

AT

Figure 4.6 Turbulent velocity fluctuations about a time average.

1

® IN'STANTANEOUS VALUE OF FLOW PARAMETERS (#, vv,
w, p, {) ARE WRITTEN AS:
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CONVECTION - CONSERVATION EQS.- TURBULENT FLOW

e BECAUSE OF THE RANDOMLY FLUCTUATING VELO-
CITIES, THE FLUID PARTICLES DO NOT STAY IN ONE
LAYER (OR STREAMLINE) AND FOLLOWS A TORTUOUS
PATH.

e CONSEQUENTLY, A MIXING OCCURS BETWEEN FLUID
LAYERS AND THIS INCREASES THE HEAT AND MO-
MENTUM EXCHANGES.

e THE AVERAGE OF A FLOW PARAMETER IS GIVEN BY:

FOR STEADY FLOW

= I J' & fdr INDEPENDENT OF TIME
At 7o

e THE TIME INTERVAL, At,, SHOULD BE LARGE TO EX-
CEED AMPLY THE PERIOD OF THE FLUCTUATIONS.

e THE TIME AVERAGE OF [

L[ = [ (- )= F- T =0

At o At 7o

j‘r
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CONVECTION - CONSERVATION EQUATIONS- TURBULENT FLOW

CONSERVATION EQUATIONS FOR STEADY
TURBULENT FLOW

au ov aw
ox 8y oz

au_

o't
__) = kf(axz 4

WHERE VISCOUS DISSIPATION TERM, l,l.q) , IS IGNORED.

g EER
How o
+’~g31§|<l&‘|
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CONVECTION - CONSERVATION EQUATIONS- TURBULENT FLOW
CONSERVATION EQUATIONS FOR STEADY TURBULENT FLOW

LAMINAR FLOW CONSERVATION EQUATIONS

C = const.
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CONVECTION - CONSERVATION EQUATIONS.- TURBULENT FLOW
CONSERVATION EQUATIONS FOR STEADY TURBULENT FLOW

o MASS CONSERVATION EQUATION
ou ov ow
+ —

+ =0
ox Oy 0Oz

e MOMENTUM CONSERVATION EQUATIONS

ou _aﬁ _al_l _317\ ap 2 0 2 0 Tor? 0 T
e e B N T

dy 0z) Ox ox oy oz
av+ﬁav+vav+_w_gv‘_\__@+ vio-2 o -2 v - L
o “ox Vay az) oy ' e Ty TP

Body forces ignored |

¢ ENERGY CONSERVATION EQUATION

C ?—€+u§£+v§+wa—f =kV°"i—i E’_t—'—ipc W——a— c wt'
Pl "“ox "oy oz Pt T PV TP

o8 & 8

V= + +
ox* 0y 0z’
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CONVECTION - CONSERVATION EQUATIONS.- TURBULENT FLOW

e WHEN TURBULENT FLOW EQUATIONS ARE COMPAR-
ED WITH STEADY STATE LAMINAR FLOW EQUATIONS
WE OBSERVE ADDITIONAL TERMS (FRAMED WITH
DOTTED LINES).

e THESE TERMS ARE ASSOCIATED WITH TURBULENT
FLUCTUATIONS.

e IN THE MOMENTUM EQUATIONS THESE ADDITIONAL
(FLUCTUATING) TERMS REPRESENTS "TURBULENT
MOMENTUM FLUX," WHICH ARE USUALLY REFERRED
TO AS:

_ APPARENT STRESSES, OR
: REYNOLDS' STRESSES. ’

--------------------------------------------------------

e IN THE ENERGY EQUATION THE FLUCTUATING TERMS
REPRESENT:

----------------------------------------------------------------------

...........................................................................................................
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CONVECTION - BOUNDARY LAYER

CONCEPT OF BOUNDARY LAYER
e CONSIDER A VISCOUS FLOW OVER A PLATE

Thin velocity
boundary layer

X, U

Figure 4.7 Velocity profile in the vicinity of a plate

e THE VELOCITY OF THE FLUID CLOSE TO THE PLATE
VARIES FROM ZERO TO THE VELOCITY OF THE FREE
STREAM U.

e BECAUSE OF THE VELOCITY GRADIENT, THERE ARE
VISCOUS STRESSES IN THIS REGION.

¢ THE MAGNITUDE OF THE VISCOUS STRESSES IN-
CREASES AS WE GET CLOSER TO THE WALL.
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CONVECTION - BOUNDARY LAYER

e BASED ON THE ABOVE OBSERVATION, PRANDLT

- FOR SMALL VISCOSITY FLUIDS, AND
- LARGE VELOCITIES

DIVIDED THE FLOW ON THE WALL INTO TWO
REGIONS:

» A VERY THIN LAYER (BOUNDARY LAYER ) IN THE IMME-
DIATE NEIGHBOR OF THE WALL IN WHICH THE VELOCITY

INCREASES RAPIDLY WITH THE DISTANCE TO THE WALL,
ie., THERE ARE:

- HIGH GRADIENTS
- HIGH SHEAR STRESSES.

» A POTENTIAL FLOW REGION, OUTSIDE OF THE BOUN- -
DARY LAYER, WHERE THERE IS ALMOST NO VELOCITY
GRADIENT, i.e., NO VISCOUS STRESS.

e THE LIMIT OF THE BOUNDARY LAYER (BOUNDARY
LAYER THICKNESS, DENOTED BY o) IS

"THE DISTANCE FROM THE WALL WHERE THE FLOW
VELOCITY REACHES 99% OF THE FREE STREAM
VELOCITY."

e A BOUNDARY LAYER CAN BE:
» LAMINAR, OR
» TURBULENT.
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CONVECTION - LAMINAR BOUNDARY LAYER

LAMINAR BOUNDARY LAYER

- FLOW IN THE BOUNDARY LAYER IS LAMINAR WHEN
THE FLUID PARTICLES MOVE ALONG THE STREAM
LINES IN AN ORDERLY MANNER.

- THE CRITERION FOR A FLOW OVER A FLAT PLATE TO
BE LAMINAR IS:

Re, =g)£<5><10s
M

- THE ANALYSIS OF THE BOUNDARY LAYER CAN BE
CONDUCTED BY USING:

1. LOCAL MASS, MOMENTUM AND ENERGY CONSER-

VATION EQUATIONS, OR

2. AN APPROXIMATE METHOD BASED ON THE INTEG-
RAL CONSERVATION EQUATIONS OF MASS, MO-
MENTUM AND ENERGY.
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CONVECTION - LAMINAR BOUNDARY LAYER - CONSERVATION EQUATIONS

LAMINAR BOUNDARY LAYER CONSERVATION
EQUATIONS - LOCAL FORMULATION

® MASS AND MOMENTUM EQUATION

CONSIDER THE FLOW (AND HEAT TRANSFER) ON A
FLAT PLATE ILLUSTRATED BELOW:

Potentiat flow region Velocity

boundary layer
KA

5 Thermal
l* boundary layer

Figure 4.8 Velocity and thermal boundary layers in a laminar flow on z flat plate
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CONVECTION - LAMINAR BOUNDARY LAYER - LOCAL CONSERVATION EQS.

MASS AND MOMENTUM CONSERVATION
EQUATIONS FOR A LAMINAR FLOW

» STEADY STATE FLOW.

» TWO DIMENSIONAL FLOW
(NO VELOCITY AND TEMPE-
RATURE GRADIENTS IN THE
z-DIRECTION.

» NO BODY FORCES.

THESE EQUATIONS
ARE NON-LINEAR

» AN ORDER OF MAGNITUDE
ANALYSIS SHOWS THAT:

Fu Ov ov
V—, U=, v
ou Ox Oy
o'v O
v 2! v 2
ox* Oy
ARE VERY SMALL AND CAN
BE IGNORED:;
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CONVECTION - LAMINAR BOUNDARY LAYER - LOCAL CONSERVATION EQS.
MASS AND MOMENTUM CONSERVATION

ou oOv
+
Ox Oy
ou Ou 1 op O0'u
U—FV——=—— vV ——

Ox 6y p Ox oy

=0

10
_lop_,

p Oy
BOUNDARY CONDITIONS
y=0 u=v=0 —
y=0 u=U(x)

Y
THE SOLUTION OF THE ABOVE

SYSTEM OF EQUATIONS YIELDS THE
VELOCITY DISTRIBUTION AND THE
BOUNDARY LAYER THICKNESS

1 op

p|l— ——=0

poy
SHOWS THAT, AT A GIVEN x, THE PRESSURE IS CONSTANT
IN THE y-DIRECTION, i.e., IT IS INDEPENDENT OF y.

» THE SOLUTION OF THIS SYSTEM OF EQUATIONS IS
BEYOND THE SCOPE OF THIS COURSE.

> CERTAIN PARTICULARITIES OF THESE EQUATIONS WILL
BE USED LATTER TO DISCUSS THE THICKNESS OF THE
VELOCITY BOUNDARY LAYER.
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CONVECTION - LAMINAR BOUNDARY LAYER - LOCAL CONSERVATION EQS.

» BERNOULLI EQUATICN FOR THE POTENTIAL FLOW

REGION

INTEGRATION

Y

oU(x) 10p
U —__ZY
() 0x p Ox

px)+ —; pU*(x) = const.

THIS IS THE BERNOULLI EQUATION.

PAGE 4.30



CONVECTION - LAMINAR BOUNDARY LAYER - LOCAL CONSERVATION EQS.

e ENERGY CONSERVATION EQUATION

» IF {, # tj. A THERMAL BOUNDARY LAYER FORMS ON THE

PLATE.

THROUGH THIS LAYER, THE FLUID TEMPERATURE MAKES
THE TRANSITION FROM THE WALL TEMPERATURE, ¢, TO
THE FREE STREAM TEMPERATURE, ¢ ;o

THE LIMIT OF THE THERMAL BOUNDARY LAYER (BOUN-
DARY LAYER THICKNESS, 8, )IS THE DISTANCE FROM
THE WALL WHERE THE FLOW TEMPERATURE REACHES
99% OF THE FREE STREAM TEMPERATURE.

THE THICKNESS OF THE THERMAL BOUNDARY LAYER IS
IN THE SAME ORDER OF MAGNITUDE OF THE THICKNESS
OF THE VELOCITY BOUNDARY LAYER.

HOWEVER, THEY ARE NOT NECESSARILY EQUAL.
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CONVECTION - LAMINAR BOUNDARY LAYER - LOCAL CONSERVATION EQS.
ENERGY CONSERVATION EQUATION

pc ﬁ+u2t—+vﬂ+w—ai =k 62t+62r+azt + ud
oc “ox oy oz) \oxt oyr ozt "

» TWO DIMENSIONAL
FLOW,.

» STEADY STATE FLOW.

» VISCOUS DISSIPATION -
NEGLECTED COMPARED §
TO THE WALL HEAT
FLUX:

wp~0

Y
ot ot k(& Ot
U—+v—-= +
ox 0y pc,\ox* 0y

» AN ORDER OF MAGNI-
TUDE ANALYSIS SHOWS
THAT

o't

Ox?
IS SMALL AND CAN BE
IGNORED.
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CONVECTION - LAMINAR BOUNDARY LAYER - LOCAL CONSERVATION EQS.

ENERGY CONSERVATION EQUATION

ot ot o’t
U—+V— =0
ox Jdy 0y

» BOUNDARY CONDI-
TIONS FOR A CONS-
TANT WALL TEMPE-
RATURE:

y=0 t=t¢,
y:oo t:tf

x=0t=@

Y

THE INTEGRATION OF THIS EQUATION IN CONJUNCTION
WITH MASS AND MOMENTUM EQUATIONS YIELDS THE
TEMPERATURE DISTRIBUTION AND THE THICKNESS OF
THE THERMAL BOUNDARY LAYER.
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CONVECTION - LAMINAR BOUNDARY LAYER

CONSERVATION EQUATIONS - INTEGRAL FORMULATION

- @ THE OBJECTIVE OF THE STUDY OF A BOUNDARY
LAYER IS TO DETERMINE ON THE WALL.:

» THE SHEAR FORCES, AND
» THE HEAT TRANSFER COEFFICIENT.

e THE SOLUTION OF THE GOVERNING EQUATIONS WE |
HAVE JUST DISCUSSED TO OBTAIN THE ABOVE
QUANTITIES IS QUITE DIFFICULT AND IS NOT WITHIN
THE SCOPE OF THIS COURSE.

e WE WILL DISCUSS NOW A SIMPLE APPROACH CALL-
ED "THE INTEGRAL METHOD:"

» TO ANALYZE THE BOUNDARY LAYER, AND

» TO DETERMINE THE SHEAR STRESSES AND THE
HEAT TRANSFER COEFFICIENT.

e THIS METHOD WAS INTRODUCED BY " von KARMAN"
IN 1947. |

e INTEGRAL METHOD CONSISTS OF FIXING THE
ATTENTION ON THE OVER-ALL BEHAVIOR OF THE
BOUNDARY LAYER INSTEAD OF THE LOCAL BEHAV-
IOR OF THE SAME LAYER.

e TO DERIVE THE INTEGRAL BOUNDARY LAYER
-~ EQUATIONS, THE INTEGRAL CONSERVATION EQUA-
TIONS (CHAPTER 2) WILL BE APPLIED:

» TO A'FIX CONTROL VOLUME l
» UNDER STEADY STATE CONDITIONS.
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CONVECTION - LAMINAR BOUNDARY LAYER

CONSERVATION EQUATIONS - INTEGRAL FORMULATION

e BOUNDARY LAYER INTEGRAL MASS CONSERVATION

EQUATION.
/ Limit of the
U ( x) 1 boundary layer
al fl / e
Potential flow n c
region b ¢ f ;/ /
Velocity
/-:"7/‘ n_ boundary layer
_c y
4 ] Lot p+ D dx
dx
8(x) = I Velocity
R | profiles
TW
4
X
07 X dx

Figure 4.9 Control volume for approximate analysis of the velocity boundary

layer
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CONVECTION - LAMINAR BOUNDARY LAYER
MASS CONSERVATION EQUATION - INTEGRAL FORMULATION

% j pdV:-fﬁ.p(rz—a))dA

V(z} A(T)

» FIX CONTROL
VOLUME
® =0

» STEADY STATE

APPLICATION TO
THE SELECTED
CONTROL VOLUME

L A.pVdA =1, + 1, +1n, +11, =0

m, =0, solidwall
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CONVECTION - LAMINAR BOUNDARY LAYER
CONSERVATION EQUATIONS - INTEGRAL FORMULATION

e BOUNDARY LAYER MOMENTUM CONSERVATION
EQUATION

4 _[ pi)’dV=—Ih’.pii(\7—65)dA— Jh'.p?dA
dt V() Alx) A(x)
+ jﬁ.EdA+ jpng

A(7) V(<)

» STEADY STATE
» ®=0 -
» GRAVITY NEGLECTED

» NO PRESSURE VARIATION
IN THE y-DIRECTION.

» W IS CONSTANT. — -

» STRESS FORCES ACTING ON
ALL FACES EXCEPT THE
FACE da ARE NEGLIGIBLE.

Y
M, - M, - M, - j i pidd-|s, p.  Td4+ jﬁ“.é‘dA )
) Ay A Ay

M MOMENTUM
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CONVECTION - LAMINAR BOUNDARY LAYER
MOMENTUM CONSERVATION EQUATION - INTEGRAL FORMULATION

_A/Iab - Mcd - Mbc - J ﬁab'prdA - J. ﬁcd'px+dx7dA + J. ﬁdq‘gdA =0
A A, Ay

M, =Jﬁcd.p(ui’)
”

or
M, =5

0

!
M, =, U(x)i =-U (x)?-fl——U pudy] dx
dx| b "

I h’ab.pj. dd=n,pl
. .

J‘ Aoy Drvael-dA =R D, 01
A

or

i, p..Tdd=i (p.+%edn)
Au dx

A,.ocdd=—1_idx
A, :
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CONVECTION - LAMINAR BOUNDARY LAYER
MOMENTUM CONSERVATION EQUATION - INTEGRAL FORMULATION

—n[ | puzay] i, jpu’dy] —h;di“ pu"dy] ds
¢ X L 0 X C& 0 X

{
+U(x)?iU pua’yT dx-n,pl-n(p, + 4, dx) -1 idx=0
dx| Jo 1. dx

X1
KNOWING THAT
i l=-1 "
Ai,.i=1
Y
d ¢ , d ¢ _dp
_d_xjo pu dy+U(x)£J‘0puajz —Elwcw
ADDING AND SUBTRACTING
TO THE LEFT SIDE
du(x)[ -
dx Uopudy]
Y
d dU(x q
JI(U(x) u)udy — p ()j udy = p1+‘c

d
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CONVECTION - LAMINAR BOUNDARY LAYER
MOMENTUM CONSERVATION EQUATION - INTEGRAL FORMULATION

dU(x)Iudy— dpl+T

p%f; (U(x) - ujudy —p

USING THE BERNOULLI
EQUATION:

p(x)+ % pU?*(x) = const.

dp dU(x)
had PSP §
dx pU(x) dx

(o _ (o
dx Jo dx

JPU (x) dU(x)

dU(x) e

5(I)(U(x) —u)udy +p ™

¢

[ — 8(x)

THIS IS THE'INTEGRAL MOMENTUM EQUATION OF A STEADY,
LAMINAR AND INCOMPRESSIBLE BOUNDARY LAYER.
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CONVECTION - LAMINAR BOUNDARY LAYER
CONSERVATION EQUATION - INTEGRAL FORMULATION

e BOUNDARY LAYER ENERGY COSERVATION

EQUATION
/Velocity profile

Temperature profile

1
Velocity boundary
laye

- -
- -

Thermal boundary
layer

Wall heat
exchange

Figure 4.10 Control volume for integral conservation of energy
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CONVECTION - LAMINAR BOUNDARY LAYER
ENERGY CONSERVATION EQUATION - INTEGRAL FORMULATION

L[ pe+d)aV =~ [ple+§)i(v-d)dA- [7gda
dv V(1) Ad(t) A7)

- jﬁ.p7.vdA+ 7.0V dA+ jq"'dV

A(x) A(z) v (x)

FIX CONTROL VOLUME.
STEADY STATE.

KINETIC ENERGY NEGLI-
GIBLE.

POTENTIAL ENERGY NE-
GLIGIBLE.

VISCOUS ENERGY NEGLI-
GIBLE.

NO INTERNAL SOURCES.

Y
-jpu(ﬁ.v)dA —-j 7. pT.vdd- jﬁ.q‘”dA 0
A A

A

u=h—£ u: INTERNAL ENERGY

p

| Aphvdd+[ 7.G"dA=0] |Eqvation

APPLICATION TO THE |
CONTROL VOLUME abed

E,+E, +E, +]| 7,§"dd=0
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CONVECTION - LAMINAR BOUNDARY LAYER
ENERGY CONSERVATION EQUATION - INTEGRAL FORMULATION

E,+E, +E,+| #,.§"d1=0

E_=|#A_p(ui)hdA = quhdy]

]

+ ——H puhdy} dx
Lo

| o]
|

d
dx

x

e
_ dt| - d
=n, __kfaty,(,]:ldxzkf%’iﬁodx
dp d dt
E“ﬂpuhdy]-—;“{)puh aj) +kf$y=0 =0
o l
dt
£ [lputh, ~hydy = 2

y=0
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CONVECTION - LAMINAR BOUNDARY LAYER
ENERGY CONSERVATION EQUATION - INTEGRAL FORMULATION

dt
T dy Yoo

= j pu(h, — hydy = k,—

hf —h= cp(tf _t)

5 (=) dt
dec pu(t, —t)dy =k, — B, .

[ —3,(x)

THIS IS THE INTEGRAL ENERGY EQUATION OF A STEADY,
LAMINAR AND INCOMPRESSIBLE BOUNDARY LAYER.
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CONVECTION - TURBULENT BOUNDARY LAYER

TURBULENT BOUNDARY LAYER

WE HAVE JUST DISCUSSED THE LAMINAR BOUNDARY
LAYER.

HOWEVER, IN MANY ENGINEERING APPLICATIONS,
THE BOUNDARY LAYER IS TURBULENT.

IN LAMINAR BOUNDARIES, MOMENTUM AND HEAT
ARE TRANSPORTED ACROSS THE FLUID LAYERS ONLY
BY MOLECULAR DIFFUSION,

CONSEQUENTLY, THE CROSS FLOW OF PROPERTIES IS
SMALL.

IN TURBULENT FLOWS, THE MIXING BETWEEN
ADJACENT FLUID LAYERS IS SIMULTANEOUSLY
GOVERNED BY TWO MECHANISMS:

» MOLECULAR TRANSPORT, AND

» MACROSCOPIC TRANSPORT DUE TO FLUID LUMPS (PARTI-
CLES).

BECAUSE OF THE SECOND MECHANISM, MOMENTUM
AND ENERGY TRANSPORT IS GREATLY ENHANCED.

TO DISCUSS THE BASIC FEATURES OF TURBULENT
BOUNDARY LAYERS WE WILL ASSUME THAT THE
GOVERNING EQUATIONS CAN BE OBTAINED FROM
SIMPLIFIED LAMINAR BOUNDARY LAYER EQUATIONS.
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CONVECTION - TURBULENT BOUNDARY LAYER

LAMINAR FLOW
EQUATION OVER A
FLAT PLATE

U(x) = const.
ie.,
D = const.

+u
+v'
!

+ ¢

ou _Oou

H— AtV —=V
ox Oy

ot ot
U—+v—=

Ox Oy

TURBULENT FLOW EQUATIONS OVER A FLAT PLATE.
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CONVECTION - TURBULENT BOUNDARY LAYER

* DERIVATION OF THE TIME AVERAGED MASS CONSERVATION

EQUATION
au

6x

avo

Oy

ou Ov
+
Ox Oy

=0

1

ou ou

6v6v’

+
Oox Ox

3y3y

=0

1 J' ou
T+
At J. Ox
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CONVECTION - TURBULENT BOUNDARY LAYER

TURBULENT FLOW - MOMENTUM AND ENERGY EQUATIONS

_ou _ 173 6—,5
UtV — = V——— U

Ox

» NEGLECT:

0 7

——u'tand ——y't

106 ouw 0O
— “, —_ U
oy poy 0oy Oy
3 0

F1

>~V
oy° 0Oy

* REPRESENTS THE SHEAR STRESS DUE TO MOLECULAR
! TRANSPORT OF MOMENTUM.

REPRESENTS THE HEAT FLUX DUE TO MOLECULAR
TRANSPORT OF HEAT.
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CONVECTION - TURBULENT BOUNDARY LAYER - TURBULENT SHEAR STRESS

e TO UNDERSTAND THE MEANING OF:
a Tgel

—u'v' and —v't

oy oy
CONSIDER THE TWO DIMENSIONAL FLOW IN WHICH
THE MEAN VALUE OF THE VELOCITY IS PARALLEL TO
THE x-DIRECTION.

A
y

u,x

Figure 4.11 Turbulent momentum exchange in two
dimensional flow.
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CONVECTION - TURBULENT BOUNDARY LAYER - TURBULENT SHEAR STRESS

e BECAUSE OF THE TURBULENT NATURE OF THE

FLOW, THE INSTANTANEOUS VELOCITY OF THE
FLUID CHANGES CONTINUOUSLY:

» IN DIRECTION, AND
» IN MAGNITUDE.

y A u, L
/1
u]
f '.‘-). ' '
0 o
r = X
v2 vz -
—_— 37 — 24!
U =u—1u
— = [
| #w=u+y
U

Figure 4.12 Instantaneous turbulent velocities

e THE INSTANTANEOUS VELOCITY COMPONENTS ARE:

u=u+u

!

V=9

—_—e
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CONVECTION - TURBULENT BOUNDARY LAYER - TURBULENT SHEAR STRESS

e WHILE DISCUSSING THE VISCOSITY, WE HAVE SEEN
THAT:

» AN EXCHANGE OF MOLECULES BETWEEN THE FLUID
LAYERS ON EITHER SIDE OF THE PLANE SS PRODUCES A
CHANGE IN THE x-DIRECTION MOMENTUM.

» THIS CHANGE IS CAUSED BY THE EXISTENCE OF A GRA-
DIENT IN THE x-DIRECTION VELOCITY.

» THE MOMENTUM CHANGE PRODUCES A SHEARING FORCE
IN THE FLUID PARALLEL TO x-DIRECTION AND DENOTED
BY T,.

e [F TURBULENT FLOW VELOCITY FLUCTUATIONS
OCCUR BOTHIN x- AND y-DIRECTIONS (CASE
STUDIED):

» THE y-DIRECTION FLUCTUATIONS, V', TRANSPORT FLUID
LUMPS (LARGER THAN THE MOLECULAR TRANSPORT).

» INSTANTANEOUS RATE OF MASS TRANSPORT PER UNIT
AREA AND PER UNIT TIME ACROSS SS IS:

pv

» INSTANTANEOUS RATE OF TRANSFER IN THE y-DIREC-
TION OF x-DIRECTION MOMENTUM PER UNIT AREA AND"
TIME ACROSS SSIS:

—pv'(u+u')

THE MEANING OF THE "MINUS" SIGN WILLL BE DISCUSSED
LATER.

!
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CONVECTION - TURBULENT BOUNDARY LAYER - TURBULENT SHEAR STRESS

> THE TIME AVERAGE OF THE x-DIRECTION MOMENTUM
TRANSFER CREATES A TURBULENT SHEAR STRESS OR
REYNOLDS STRESS, T, :

1
T, =——| pv(@+u')dt
t ATO A‘t.p ( )

1 N
ELO(pv Judt=0 |

Y
v, = ‘A% [, (v s =~(pvyud

= const. >
P Y

T, =—pvu

» v'1' IS THE TIME AVERAGE OF THE PRODUCT OF %' AND V';
IT IS DIFFERENT FROM ZERO.
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CONVECTION - TURBULENT BOUNDARY LAYER - TURBULENT SHEAR STRESS

e TO UNDERSTAND THE REASON FOR THE MINUS SIGN
CONSIDER THE FOLLOWING FIGURE:

4

y

a(y+1)

u(y)

w(y-1)

.".. — l —_—

T
7
G s

i

Figure 4.13 Mixing length for momentum transfer in turbulent flow

. » THE FLUID LUMPS WHICH TRAVEL UPWARD ( v/ > () ) AR-
RIVE IN A LAYER IN THE FLUID WHERE THE MEAN VELO-
CITY u IS LARGER THAN THE VELOCITY OF THE LAYER
FROM WHICH THEY COME.

WE WILL ASSUME THAT THESE LUMPS KEEP THEIR ORIGI-
NAL VELOCITY # DURING THEIR MIGRATTON.

THEY WILL, THEREFORE, TEND TO SLOW DOWN THE FLUID
LUMPS EXISTING IN THEIR DESTINATION LAYER.

THEREBY, THEY WILL GIVE RISE TO A NEGATIVE #' .
CONVERSELY IF v’ IS NEGATIVE.

THE OBSERVED VALUE OF %' AT THE NEW DESTINATION
WILL BE POSITIVE .

PAGE 4.53



CONVECTION - TURBULENT BOUNDARY LAYER - TURBULENT SHEAR STRESS

> CONSEQUENTLY ON THE AVERAGE;
- A POSITIVE VIS ASSOCIATED WITH A NEGATIVE #' , AND

- VICE VERSA.
» THE TIME AVERAGE OF v't’ IS NOT ZERO BUT A NEGA-
TIVE QUANTITY.
ou _ou 120
U—+V—=——1,~—u'v'

ox Oy poy ' 0y
|

ﬁgz+ ou _ ( +1,)

ox ay pay

T =T, +T,|IS CALLED TOTAL SHEAR STRESS IN TURBULENT FLOW.
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CONVECTION - TURBULENT BOUNDARY LAYER - TURBULENT SHEAR STRESS

e THE TURBULENT MOMENTUM TRANSPORT CAN BE
RELATED TO THE TIME-AVERAGE VELOCITY GRADI-
ENT: ou

oy
BY USING THE "MEAN FREE PATH" CONCEPT INTRO-

DUCED DURING THE STUDY OF THE MOLECULAR
MOMENTUM TRANSPORT.

» IN TURBULENT FLOWS, THE DISTANCE /" TRAVELED
BY THE FLUID LUMPS IN THE DIRECTION NORMAL TO THE
MEAN FLOW WHILE MAINTAINING THEIR IDENTITY AND
PHYSICAL PROPERTIES IS CALLED "MIXING LENGTH."

» CONSIDER A FLUID LUMP LOCATED AT A DISTANCE "' ] "
ABOVE AND BELOW THE SURFACE SS.

[

Y

Figﬁre 4.13 Mixing length for momentum transfer in turbulent flow.
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CONVECTION - TURBULENT BOUNDARY LAYER - TURBULENT SHEAR STRESS

» AFTER DEVELOPING IN TAYLOR SERIES, THE VELOCITY
OF ALUMP AT (y+1) IS:

WHEREAS AT (y—1)

a(y—l)zﬁ(y)#%‘"

IF THE FLUID LUMP MOVES FROM LAYER (y -l) TO THE
LAYER y UNDER THE INFLUENCE OF A POSITIVE V', ITS
VELOCITY PARALLEL TO x-DIRECTION WILL BE SMALLER
THAN THE VELOCITY PREVAILING IN THE LAYER y BY AN
AMOUNT:

%71

u(y—l)-u(y)= —lé-y—
SIMILARLY, IF A LUMP OF FLUID ARRIVES TO THE LAYER y

FROM LAYER (y+/) UNDER THE INFLUENCE OF A NEGA-
TIVE v’ ITS VELOCITY WILL BE HIGHER BY AN AMOUNT:

_ _ ou

u(y +1)-u(y) 51'5;
THESE DIFFERENCES IN # -VELOCITIES CONSTITUTE THE
BASIS OF #' FLUCTUATIONS:

u:la—u

Oy
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CONVECTION - TURBULENT BOUNDARY LAYER - TURBULENT SHEAR STRESS

» TURBULENT SHEAR STRESS.

T, =—pvu
ou |
u' =1 o
— Ou
T, =—pvi—
DEFINING "APPARENT
KINEMATIC VISCOSITY"
AS: 73
g, =—V'l
ou
"y

» TOTAL SHEAR STRESS:

T=1T,+71,
ou
T, =U—
Oy
.
T =p8 .a_ﬁ.
! maJ; i
T=1,+1,=p(V+g, ou v=t
Oy P
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CONVECTION - TURBULENT BOUNDARY LAYER - TURBULENT SHEAR STRESS

» USUALLY V'IS OF THE SAME ORDER AS %',
» €, IS NOT A PHYSICAL PROPERTY AS V.

» € _DEPENDS ON THE MOTION OF THE FLUID, Re-NUMBER,
etc.

» € VARIES FROM POINT TO POINT IN THE FLOW, IT
VANISHES NEAR THE WALL.

» €,/ V CAN GO AS HIGH AS 500,

» V CAN, THEREFORE BE IGNORED IN COMPARISON WITH
€

m’

€, . APPARENT KINEMATIC VISCOSITY
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CONVECTION - TURBULENT BOUNDARY LAYER - TURBULENT ENERGY TRANSFER

TRANSFER OF ENERGY

e THE TRANSFER OF ENERGY IN A TURBULENT FLOW
CAN BE MODELED IN A WAY SIMILAR TO THAT OF
THE MOMENTUM.

'}

Y

Figure 4.14 Mixing length for energy transfer in turbulent flow.

» INSTANTANEOUS ENERGY TRANSPORT PER UNIT AREA
AND UNIT TIME IN THE y-DIRECTION:

pe,v'(1)
WHERE:

ie., /
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CONVECTION - TURBULENT BOUNDARY LAYER - TURBULENT ENERGY TRANSFER

» THE TIME AVERAGE OF TURBULENT HEAT TRANSFER:

"__ ] {7 I}
q'= -A_'_c;_'[m. pc,v'(f+t')du

Y

1

—L (pcpv')t’d'c = (pcpv')t'

p = const.

c,= const.

g/ =pc,vt

» ENERGY EQUATION FOR A TURBULENT FLOW:

_of _ ot
U—+v—=0a

ox Oy

q'=pc,v't’

oF ot 1 B8, |
U_—+V_—=-——_—(q'+q))
ox Oy pc, Oy

"=gq,"+q, : TOTAL HEAT FLUX IN A TURBULENT FLOW.
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CONVECTION - TURBULENT BOUNDARY LAYER - TURBULENT ENERGY TRANSFER

» USING THE CONCEPT OF MIXING LENGTH WE CAN WRITE

THAT:
t' zlg-
oy
q:fz pcpvftf
,g_lat
oy
"__ 141 —r—laf
q,=pc,vi =—pc,v 5

» v't'1S POSITIVE IN THE AVERAGE.

» THE MINUS SIGN IS INTRODUCED TO RESPECT THE CON-
VENTION THAT HEAT FLOW IS POSITIVE IN THE DIREC-
TION OF y POSITIVE.

» THEREFORE, THE SECOND LAW OF THERMODYNAMICS IS
SATISFIED.

» TURBULENT HEAT TRANSFER IS THEN WRITTEN AS:
—- Of

g;=—pc,v'il—

Oy
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CONVECTION - TURBULENT BOUNDARY LAYER - TURBULENT ENERGY TRANSFER

» TOTAL HEAT TRANSFER

R /) "
q" - QJ + qt

Y

ot

q" =—(kf +Cpp8h)5

or

. ot
q" =—c,p(o+ ah)é;

k
ot = —Z- : MOLECULAR DIFFUSIVITY OF HEAT

c,p

€, :EDDY DIFFUSIVITY OF HEAT

h
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FORCED CONVECTION OVER A FLAT PLATE

FORCED CONVECTION OVER A FLAT PLATE

OBJECTIVES: DETERMINE THE WALL FRICTION AND HEAT
TRANSFER COEFFICIENTS IN LAMINAR AND
TURBULENT BOUNDARY LAYERS.

IN ORDER TO REACH RAPIDLY THE OBJECTIVES

| "INTEGRAL MOMENTUM AND ENERGY CONSERVATION
EQUATIONS™

WILL BE USED.

{ | LAMINAR BOUNDARY LAYER

e IN LAMINAR BOUNDARY LAYER, THE FLUID MOTION
IS VERY ORDERLY.

e THE FLUID MOTION ALONG A STREAMLINE HAS VELO-
CITY COMPONENTS IN x AND y DIRECTIONS (z AND v).

e THE VELOCITY COMPONENT v, NORMAL TO THE
WALL, CONTRIBUTES SIGNIFICANTLY TO MOMENTUM
AND ENERGY TRANSFER THROUGH THE BOUNDARY.

e FLUID MOTION NORMAL TO THE WALL IS BROUGHT

ABOUT BY THE BOUNDARY LAYER GROWTH IN THE
x-DIRECTION.
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FORCED CONVECTION OVER A FLAT PLATE
LAMINAR BOUNDARY LAYER.

e CONSIDER A FLAT PLATE OF CONSTANT TEMPERA-
TURE PLACED PARALLEL TO THE INCIDENT FLOW AS
ILLUSTRATED IN THE FOLLOWING FIGURE.

Velocity boundary
layer

Thermal boundary
layer

Figure 4.15 Velocity and thermal boundary layers for a laminar flow past a
flat plate.

» U(x)=const.=U

» p(x)=const.= p

> PH?SICAL PROPERTIES ARE CONSTANT.
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FORCED CONVECTION OVER A FLAT PLATE
LAMINAR BOUNDARY LAYER.

VELOCITY BOUNDARY LAYER- BOUNDARY LAYER
THICKNESS.

o2 [ (W) -+

dU(x)
dx

[ Ux)-wydy =+,

U(x) = const.=U

p(x) = const.= p

PHYSICAL PROPERTIES ARE
CONSTANT.

Y

d 8(x)
p—— | (U —u)udy = 1,
dx Jo

u(x, y) = a(x)+ b(x)y +c(x)y’ +d(x)y’
BOUNDARY CONDITIONS
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FORCED CONVECTION OVER A FLAT PLATE

'LAMINAR BOUNDARY LAYER - VELOCITY BOUNDARY LAYER

D%JOS(x)(U(x) ~uudy =1,

x=0 6=0

l.e., const.= 0

o= 4.64\/E——1—x + const.
pU

1

O =464

pl 5 464 464

p

__x - = —_
u- " x [plx Re
| | |
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FORCED CONVECTION OVER A FLAT PLATE
LAMINAR BOUNDARY LAYER - VELOCITY BOUNDARY LAYER

VELOCITY BOUNDARY LAYER- FRICTION COEFFICIENT

cooufO) 23,V
M) L T2"s

5 464 _ 464

x |[pUx Re” >

Y

=033 PY

.iRe

x

Cf — %ﬂé LOCAL FRICTION

COEFFICIENT
A/ Re,

AVERAGE FRICTION
COEFFICIENT

c - J.:Cf dx
) ondx

C. = 1.292 AVERAGE FRICTION

COEFFICIENT
7 /Re,
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FORCED CONVECTION OVER A FLAT PLATE
LAMINAR BOUNDARY LAYER.

THERMAL BOUNDARY LAYER- BOUNDARY LAYER
THICKNESS.

| Velocity boundary
P =cons f. layer

tJr = const.

U = const. Thermal boundary \
layer

-

x,u,t

Figure 4.15 Velocity and thermal boundary layers for a laminar flow past a
flat plate.

e TEMPERATURE OF THE PLATE IS CONSTANT.
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FORCED CONVECTION OVER A FLAT PLATE
LAMINAR BOUNDARY LAYER - THERMAL BOUNDARY LAYER THICKNESS

d . dt
-c—z;x—'l: cppu(tf-—t)ajz=kf5

.l

y=0

do

d s
= ["c,pu®, -0)dy = ks

y=0

t(x, y) = alx)+b(x)y +c(x)y" + d(x)y’
BOUNDARY CONDITIONS

y=0 t=¢,

y=98, t=t,

PAGE 4.69



FORCED CONVECTION OVER A FLAT PLATE
LAMINAR BOUNDARY LAYER - THERMAL BOUNDARY %AYER THICKNESS

do
dy o0

d .
— jo c,pu(®, —0)dy =k,

ALGEBRAIC MANIPULATIONS
AND INTEGRATION
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FORCED CONVECTION OVER A FLAT PLATE
f LAMINAR BOUNDARY LAYER - THERMAL BOUNDARY LAYER THICKNESS

d 3,
5[5(‘26@ }

3 .
2805"

)

_3al

288U

85178_1401.1_1
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FORCED CONVECTION OVER A FLAT PLATE
LAMINAR BOUNDARY LAYER - THERMAL BOUNDARY LAYER THICKNESS

INTEGRATION
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FORCED CONVECTION OVER A FLAT PLATE
LAMINAR BOUNDARY LAYER - THERMAL BOUNDARY LAYER THICKNESS

SINCE THE PLATE IS HEATED FROM THE
LEADING EDGE, C MUST BE ZERO TO
AVOID INDETERMINATE SOLUTION AT
THE LEADING EDGE.

THIS IS THE VARIATION OF
THE THERMAL BOUNDARY
LAYER THICKNESS

WE ASSUMED THAT : € < 1
THIS ASSUMPTION IS VALID FOR: Pr > (0.7

MOST OF THE GASES AND LIQUIDS HAVE Pr - NUMBERS
HIGHER THAN 0.7.

LIQUID METALS CONSTITUTE AN EXCEPTION; THEIR Pr -
NUMBERS ARE IN THE ORDER OF MAGNITUDE OF 0.01.

CONSEQUENTLY, THE ABOVE ANALYSIS CANNOT BE
APPLIED TO LIQUID METALS.

PAGE 4.73



FORCED CONVECTION OVER A FLAT PLATE
LAMINAR BOUNDARY LAYER -LOCAL HEAT TRANSFER COEFFICIENT.

| THERMAL BOUNDARY LAYER - LOCAL HEAT TRANSFER

COEFFICIENT v
ot
"‘f(@)
K =
t, —t,
O=t¢t—t,
0, =t —t, !
(
()
B =Y e
0,

M) _368,_ 39, -
oy) ., 28, 2E8 !

L
=" 23
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FORCED CONVECTION OVER A FLAT PLATE
" f LAMINAR BOUNDARY LAYER -LOCAL HEAT TRANSFER COEFFICIENT. -

_=0332k VPr [PV
nx

heX _ 03308Pr |PYX
k, L

LOCAL HEAT

Sememer | Nu_=0.3323/Pr.[Re,

musre | Nu, = 0.664\ Pr [ Re,

COEFFICIENT
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FORCED CONVECTION OVER A FLAT PLATE

LAMINAR BOUNDARY LAYER -LOCAL HEAT TRANSFER COEFFICIENT.

» IN THE ABOVE DISCUSSION, IT IS ASSUMED THAT THE
FLUID PROPERTIES ARE CONSTANT.

» IF THERE IS A SUBSTANTIAL DIFFERENCE BETWEEN THE
WALL AND FREE STREAM TEMPERATURES, THE FLUID
PROPERTIES ARE CALCULATED AT THE "MEAN FILM
TEMPERATURE."

» LOCAL AND AVERAGE CONVECTION HEAT TRANSFER
COEFFICIENT DERIVED ABOVE ARE VALID FOR:

Pr=>0.7
Re, <5x10°

» FOR A CONSTANT SURFACE HEAT FLUX, THE CONVEC-
TION HEAT TRANSFER COEFFICIENT IS GIVEN BY:

Nu, = 0453 Re'? Pr"”
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FORCED CONVECTION OVER A FLAT PLATE

TURBULENT BOUNDARY LAYER

e A TURBULENT BOUNDARY LAYER IS CHARACTERIZED
BY VELOCITY FLUCTUATIONS.

e THESE FLUCTUATIONS ENHANCE CONSIDERABLY THE
MOMENTUM AND ENERGY TRANSFER, i.e., INCREASE:

» SURFACE FRICTION, AND
» HEAT TRANSFER COEFFICIENT.

e TURBULENT BOUNDARY LAYER DOES NOT START
DEVELOPING WITH THE LEADING EDGE OF THE
PLATE.

1 Laminar  “ITransition”]  Turbulent

Figure 4.16 The development of laminar and turbulent layers on a flat plate

e THE BOUNDARY LAYER IS INITIALLY LAMINAR.

o AT SOME DISTANCE FROM THE LEADING EDGE, LA-
MINAR FLLOW BECOMES UNSTABLE.

e A GRADUAL TRANSITION TO TURBULENT FLOW
OCCURS.

PAGE 4.77



FORCED CONVECTION OVER A FLAT PLATE
TURBULENT BOUNDARY LAYER

{

y

//-/J

—y \ \ Turbulent lcgim
T i e i

Buffer zone
i i . =i

- - — Laminar sub-layer

1 Laminar  “|Transiion |  Turbulent

Figure 4.16 The development of laminar and turbulent layers on a flat plate

e THE TURBULENT REGION IS CHARACTERIZED BY A
HIGHLY RANDOM, THREE DIMENSIONAL MOTION OF
FLUID LUMPS.

THE TRANSITION TO TURBULENCE IS ACCOMPANIED
BY AN INCREASE OF:

» THE BOUNDARY LAYER THICKNESS,
» THE WALL SHEAR STRESS, AND
» THE CONVECTION HEAT TRANSFER COEFFICIENT.

e IN THE TURBULENT BOUNDARY LAYER THREE
REGIONS EXISTS:

» LAMINAR SUBLAYER WHERE:
- DIFFUSION DOMINATES PROPERTY TRANSPORT, AND
- THE VELOCITY AND TEMPERATURE PROFILES ARE
LINEAR. :

» BUFFER ZONE WHERE MOLECULAR DIFFUSION AND
TURBULENT MIXING ARE COMPARABLE.

» TURBULENT ZONE WHERE THE PROPERTY TRANSPORT IS
DOMINATED BY TURBULENT MIXING.
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FORCED CONVECTION OVER A FLAT PLATE

TURBULENT BOUNDARY LAYER

o DESPITE THE PRESENCE OF A TRANSITION ZONE, IT IS
CUSTOMARY TO ASSUME THAT THE TRANSITION
FROM LAMINAR TO TURBULENT BOUNDARY LAYER
OCCURS SUDDENLY.

THE TRANSITION LOCATION X, IS TIED TO REYNOLDS
NUMBER:
_plk

1l

Re

x

IF Re, 25x 10° , THE BOUNDARY LAYER IS TURBU-
LENT.

ANALYTICAL STUDY OF THE TURBULENT BOUNDARY
LAYER IS COMPLEX:

» THIS IS DUE TO THE FACT THAT € , IS NOT A PROPERTY OF
THE FLUID.

HERE, BY USING A SIMPLE APPROACH, WE WILL
DISCUSS FOR A TURBULENT BOUNDARY LAYER:

1. THE THICKNESS,
2. THE FRICTION COEFFICIENT, AND
3. THE HEAT TRANSFER COEFFICIENT.
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FORCED CONVECTION OVER A FLAT PLATE

TURBULENT BOUNDARY LAYER

VELOCITY BOUNDARY LAYER - BOUNDARY LAYER
THICKNESS

e THE GENERAL CHARACTERISTICS OF A TURBULENT
BOUNDARY LAYER RESEMBLE TO THOSE OF THE
LAMINAR BOUNDARY LAYER.

THE TIME AVERAGE VELOCITY VARIES RAPIDLY FROM
ZERO AT THE WALL TO THE UNIFORM VALUE OF THE
POTENTIAL CORE.

BECAUSE OF THE TRANSVERSE FLUCTUATIONS, THE
VELOCITY DISTRIBUTION IS MUCH MORE CURVED
NEAR THE WALL THAN THAT IN THE LAMINAR FLOW.

HOWEVER, THIS DISTRIBUTION IS MORE UNIFORM AT
THE OUTER EDGE OF THE BOUNDARY LAYER THAN
THE LAMINAR COUNTERPART.

EXPERIMENTS HAVE SHOWN THAT THE VELOCITY
DISTRIBUTION IN A TURBULENT BOUNDARY LAYER
CAN BE ADEQUATELY DESCRIBED BY:

u
— = ( ONE SEVENTH LAW

U
THIS LAW IS VALIDFOR 5x10° < Re, <107 .

FROM NOW ON, THE BAR WILL BE REMOVED FROM 77 ,
KNOWING THAT ALL TURBULENT VELOCITIES ARE
TIME AVERAGED.
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FORCED CONVECTION OVER A FLAT PLATE

TURBULENT BOUNDARY LAYER -VELOCITY BOUNDARY LAYER

o AITHOUGH THE "ONE SEVENTH LAW" DESCRIBES

WELL THE VELOCITY DISTRIBUTION, IT DOES NOT
YIELD THE SHEAR STRESS ON THE WALL.:

du 1 U 1
d_y = ':7— §V7 ye/v
du
y—>0 ——>w 1, >
dy
THIS IS PHYSICALLY NOT ACCEPTABLE.

» INREALITY "ONE SEVENTH LAW" IS ONLY VALID IN THE
BUFFER AND TURBULENT ZONE.

» IN THE LAMINAR SUBLAYER, IT IS ASSUMED THAT THE
VELOCITY VARIES LINEARLY.

THE SLOP OF THIS VARIATION IS SELECTED SUCH THAT IT
YIELDS THE WALL SHEAR STRESS OBTAINED EXPERIMEN-
TALLY BY BLASIUS FOR TURBULENT FLOWS ON SMOOTH

PLATES:

174
. =0.0228 pUZ(l)
Us

THE VELOCITY DISTRIBUTION IN THE LAMINAR SUBLAYER
JOl'IgS TO THAT IN THE TURBULENT REGION AT A DISTAN-
CE O .

N.J

O, IS CALLED THE THICKNESS OF THE LAMINAR
SUBLAYER.
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FORCED CONVECTION OVER A FLAT PLATE

TURBULENT BOUNDARY LAYER -VELOCITY BOUNDARY LAYER '

» THE RESULTING VELOCITY PROFILE IS SKETCHED IN THE
FOLLOWING FIGURE:

y [

/

Turbulent zone

',V

Figure 4.17 Velocity profiles in the turbulent zone and laminar sub-layer.
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FORCED CONVECTION OVER A FLAT PLATE
TURBULENT BOUNDARY LAYER -VELOCITY BOUNDARY LAYER
e TO DETERMINE THE THICKNESS OF THE VELOCITY

BOUNDARY LAYER WE WILL USE INTEGRAL MOMEN-
TUM CONSERVATION EQUATION:

P%JS(X)(U (x) - ujudy +p

dU(x)
dx

Joa(x)(U(x) —u)dy =1,

U(x) = const.=U

p(x)=const.= p

PHYSICAL PROPERTIES ARE
CONSTANT.

Y
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FORCED CONVECTION OVER A FLAT PLATE

TURBULENT BOUNDARY LAYER -VELOCiTY BOUNDARY LAYER

Y

\177 v 1/4
dy = 0.02280U%( -
(5 5 ]y P (US)

0

INTEGRATION Dl

~ 1/4
740 0.0228(—"—)
72 dx Ubd

or

1/4
S S = 0.235(5) dx

1/5
x** + const.

ASSUMING:
x=0 6=0
(APPROXIMATION)

const.=(Q

5__0376 __ (376 Re:"

o

X
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FORCED CONVECTION OVER A FLAT PLATE

TURBULENT BOUNDARY LAYER -VELOCITY BOUNDARY LAYER

TURBULENT BOUNDARY LAYER - FRICTION COEFFICIENT

IN THE LAMINAR
SUBLAYER T IS | —®
GIVEN BY:

174
f V
t. =0.0228pU"| — | |

U2 u 1/4
u=0.0228p ( ) y
u \pUS

!

85_ 1 u 3/4&
& 00228\pUs) U
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FORCED CONVECTION OVER A FLAT PLATE
TURBULENT VELOCITY BOUNDARY LAYER-FRICTION COEFFICIENT

0 __0370 _ 0376 Re”

)

X
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FORCED CONVECTION OVER A FLAT PLATE
TURBULENT VELOCITY BOUNDARY LAYEP--FRICTION COEFFICIENT

WALL SHEAR STRESS: T =p ;‘_
0. 037 0376 Re”
x (9,92) -
L
0.1 '
5
Logngf | =22 _
U pUx Re’
5, 194 _
- 0.7
0 Re, \
0.0296
= pU2 Reg-z
T
€, =1 -
> P
— 0.0592
LOCAL WALL FRICTION COEFFICIENT | C, = i
. e,
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FORCED CONVECTION OVER A FLAT PLATE

TURBULENT BOUNDARY LAYER - LOCAL HEAT TRANSFER COEFFICIENT

TURBULENT BOUNDARY LAYER - HEAT TRANSFER

COEFFICIENT

¢ REYNOLDS' ANALOGY
» LAMINAR BOUNDARY LAYER

du
T= Z_
SHEAR STRESS AND HEAT Y
FLUX IN A PLANE AT . du
qﬂ':__kf__
dy
RATIOOF g AND T . Q_"_.:___/.C_f_ii_’_‘.
T u du
xc” ’l
cp
g _ kK . dt
T ue, *du
He !
Pr=—*~
3 Y
g__1 a
T Pr *du
If Pr=1 -y
- q" dt
T

PAGE 488



FORCED CONVECTION OVER A FLAT PLATE
TURBULENT BOUNDARY LAYER - LOCAL HEAT TRANSFER COEFFICIENT

INTEGRATION
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FORCED CONVECTION OVER A FLAT PLATE
TUFRBULENT BOUNDARY LAYER - LOCAL HEAT TRANSFER COEFFICIENT

|

h,

1

:EPUCPCI

DIMENSIONLESS STATEMENT
OF REYNOLDS' ANALOGY FOR
LAMINAR FLOW.

¢,

_ 0.646

Rel/2

x

Nu_=0332Re”

Nu_ =0332Re.” Pr"”
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FORCED CONVECTION OVER A FLAT PLATE
TURBULENT BOUNDARY LAYER - LOCAL HEAT TRANSFER COEFFICIENT

- IT SEEMS THAT THE EFFECT OF THE PRANDLT NUMBER
DIFII/?FRING FROM UNITY CAN BE EXPRESSED BY A FACTOR
Pr’-.

- THIS FACT IS SOMETIMES APPLIED TO CASES WHERE
EXACT SOLUTION TO THE THERMAL BOUNDARY CANNOT
BE OBTAINED; EXPERIMENTAL SKIN FRICTION MEA-
SUREMENTS ARE USED TO PREDICT HEAT TRANSFER
COEFFICIENTS.
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FORCED CONVECTION OVER A FLAT PLATE
TURBULENT BOUNDARY LAYER - LOCAL HEAT TRANSFER. COEFFICIENT

e REYNOLDS' ANALOGY
» TURBULENT BOUNDARY LAYER.

ou
1=1,+1T, =p(V+€,)—

. of
q" =-c,pla+ ﬁh)a—y-

ASSUMPTION: | V  KINEMATIC VISCOSITY; RE-
ENTIRE FLOW IN LATED TO DIFFUSIVITY OF

THE BOUNDARY MOMENTUM.

LAYER IS TURBU- €, EDDY DIFFUSIVITY OF MO-
LENT, i.e, LAMINAR MENTUM. (APPARENT
SUBLAYER AND KINEMATIC VISCOSITY).

BUl:FER ZONE OL MOLECULAR DIFFUSIVITY OF
IGNORE~ED. HEAT

V<<E ;| QUL<<E, €, EDDY DIFFUSIVITY OF HEAT.

€ =€, =€

REYNOLDS' ANALOGY
FOR TURBULENT FLOW.
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FORCED CONVECTION OVER A FLAT PLATE
TURBULENT BOUNDARY LAYER - LOCAL HEAT TRANSFER COEFFICIENT

e PRANDLT'S MODIFICATION TO REYNOLDS' ANALOGY

» PRANDLT ASSUMES THAT THE TURBULENT BOUNDARY
LAYER CONSISTS OF TWO LAYERS:

1. A VISCOUS LAYER WHERE MOLECULAR DIFFUSIVITY
IS DOMINANT:

v>>g  and oa>>g,

2. ATURBULENT ZONE WHERE TURBULENT DIFFUSIVITY
IS DOMINANT:

g, >>Vv and g, ,>>a
» FURTHERMORE, PRANDLT ASSUMES THAT:

g =€, =€

» IN THIS APPROACH Pr - NUMBER IS NOT NECESSARILY
EQUAL TO 1.

» THE VARIATION OF VELOCITY AND TEMPERATURE IN THE
TWO-REGION BOUNDARY LAYER IS SKETCHED IN THE
FOLLOWING FIGURE:
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FORCED CONVECTION OVER A FLAT PLATE
TURBULENT BOUNDARY LAYER - LOCAL HEAT TRANSFER COEFFICIENT

«— Temperature

Velocity

Figure 4.18 Turbulent boundary layer consisting of two zones - Prandlt approach.
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FORCED CONVECTION OVER A FLAT PLATE
TURBULENT BOUNDARY LAYER - LOCAL HEAT TRANSFER COEFFICIENT

» LAMINAR SUBLAYER - PRANDLT MODIFICATION

k, dt

| dpu

INTEGRATION
u=0 to u=u,
t=t, to t=t,
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FORCED CONVECTION OVER A FLAT PLATE
TURBULENT BOUNDARY LAYER - LOCAL HEAT TRANSFER COEFFICTENT

» TURBULENT REGION - PRANDLT MODIFICATION

REYNOLDS' ANALOGY
FOR TURBULENT FLOW.

H

9’ 9.

T T

w

INTEGRATION

u=u, to u=U
t=1, to t=¢,
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FORCED CONVECTION OVER A FLAT PLATE

TURBULENT BOUNDARY LAYER - LOCAL H=ZAT TRANSFER COEFFICIENT

PRANDLT MODIFICATION

LAMINAR SUBLAYER

TURBULENT REGION

THIS IS THE STATEMENT
OF PRANDLT'S MODIFY-
CATION TO REYNOLDS
ANALOGY
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FORCED CONVECTION OVER A FLAT PLATE
TURBULENT BOUNDARY LAYER - LOCAL HEAT TRANSFER COEFFICIENT
PRANDLT MODIFICATION

. - 00292 Re}* Pr
" 1+ 212 Re(Pr-1)
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FORCED CONVECTION OVER A FLAT PLATE

TURBULENT BOUNDARY LAYER - LOCAL HEAT TRANSFER COEFFICIENT

L __ 00292 Re™ Pr
* 1+212 Re*'(Pr-1)

» THIS IS THE CONVECTION HEAT TRANSFER CORRELA-
TION FOR A TURBULENT FLOW OVER A FLAT PLATE.

» APPLICATION CONDITIONS:

- FLUID PROPERTIES MUST BE EVALUATED AT THE
MEAN BOUNDARY LAYER TEMPERATURE.

- Pr=1
» THE ABOVE CORRELATION IS DIFFICULT TO INTEGRATE.

» THE FOLLOWING CORRELATION GIVE GOOD RESULTS:

DETERMINE FLUID

Nux =0.0292 Re‘l;s Prv? PROPERTIES AT THE

MEAN BOUNDARY
LLhadx _l
[iax

LAYER TEMPERATURE,
0.8 L
h = 1 0.0292 PrV’ ﬁj— k de
¢ d 0 x°?

L p

or .NuL = };:L =0.036 Rey* Pr'”
f
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FORCED CONVECTION OVER A FLAT PLATE
TURBULENT BOUNDARY LAYER - LOCAL HEAT TRANSFER COEFFICIENT
hL
0. /
Nu, === 0036 Re}* Pr"*
S

» THE ABOVE CORRELATION ASSUMES THAT THE BOUN-
DARY LAYER IS TURBULENT STARTING FROM THE LEAD-
ING EDGE OF THE PLATE.

» HOWEVER, WE KNOW THAT A PORTION OF THE PLATE IS
OCCUPIED BY A LAMINAR BOUNDARY LAYER; THE REST
BY TURBULENT BOUNDARY LAYER.

» THE AVERAGE HEAT TRANSFER COEFFICIENT INCLUDING
BOTH REGIONS IS THAN GIVEN BY:

_ [hae+| b
= I <

Nu_=0.332 Re!* Pr'”
Nu, =0.0292 Re,” Pr”

Y

08 L
= z[0332Pr"3k[ ) J"——dx+00292Pr k[pU] L dx]
) Jdox®

Y

Nu, =0.036 Pr'”[ Re;* - Re* +18.44 Re!’ |

Re_ =5.x10° *’l

Nu, =0.036 Pr'’[ Re;* - 23,100]
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FORCED CONVECTION INSIDE DUCTS

FORCED CONVECTION INSIDE DUCTS

® HEATING AND COOLING OF FLUIDS FLOWING INSIDE A
DUCT CONSTITUTE ONE OF THE MOST FREQUENTLY
ENCOUNTERED ENGINEERING PROBLEMS.

e FLOW INSIDE A DUCT CAN BE:
» LAMINAR, OR
» TURBULENT.

e TURBULENT FLOWS ARE THE MOST WIDELY ENCOUN-
TERED TYPE IN THE INDUSTRIAL APPLICATIONS.

e WHEN A FLUID WITH UNIFORM VELOCITY ENTERS A
STRAIGHT PIPE A VELOCITY BOUNDARY LAYER
STARTS DEVELOPING.

Potential core Boundary layer Completely developed

= |

RRRRRE

Entrance length

A
Y

Figure 4.19 Flow in the entrance region of a pipe.
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FORCED CONVECTION INSIDE DUCTS

Potential core Boundary layer Completely developed

——-
—rre—
———p—

e temysae—li
——re

—ram——

flow \

e

Entrance length

Figure 4.19 Flow in the entrance region of a pipe.

o AS WE PROCEED ALONG THE TUBE IN THE ENTRANCE

REGION, THE PORTION OF THE TUBE OCCUPIED
» BY THE BOUNDARY LAYER INCREASES, AND
» THAT OCCUPIED BY THE POTENTIAL FLOW DECREASES.

CONSEQUENTLY, TO SATISFY THE MASS CONSERVA-
TION PRINCIPLE, i.e., CONSTANT AVERAGE VELOCITY,

» THE VELOCITY OF THE POTENTIAL CORE SHOULD
INCREASE.

THE TRANSITION FROM LAMINAR FLOW TO TURBU-
LENT FLOW IS LIKELY TO OCCUR IN THE ENTRANCE
LENGTH.

IF THE. BOUNDARY IS LAMINAR UNTIL IT FILLS THE
TUBE, THE FLOW IN THE FULL DEVELOPED REGION
WILL BE LAMINAR WITH A PARABOLIC VELOCITY
PROFILE.
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FORCED CONVECTION INSIDE DUCTS
LAMINAR FLOWS iN DUCTS - VELOCITY DISTRIBUTION

LAMINAR FLOW IN DUCTS - VELOCITY DISTRIBU-
TION IN FULLY DEVELOPED REGION

e THE VELOCITY DISTRIBUTION CAN EASILY DETER-
MINED FOR A STEADY STATE LAMINAR FLOW IN THE
FULLY DEVELOPED REGION.

e IN THIS REGION, VELOCITY PROFILE DOES NOT
CHANGE ALONG THE TUBE.

e IT DEPENDS ONLY ON THE RADIUS, i.e., # = u(r).

Figure 4.21 Control volume in a laminar, fully developed flow in a circular tube
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FORCED CONVECTION INSIDE DUCTS
LAMINAR FLOWS IN DUCTS - VELOCITY DISTRIBUTION

4 [ pvdv =- [fp¥(3-8)d - [7pld4
dt V(<) A(7) A(r)
+ja.§d,4+ ngdV

A(r) V(v)

» STEADY STATE
» ®=0

» GRAVITY NEGLECTED

_J',-,-

A

Y
~|.pld A+ [f.cd 4=0
A _A

-

—?-jﬁ.p?dA-i—?-Jh’E
A

A
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FORCED CONVECTION INSIDE DUCTS
LAMINAR FLOWS IN DUCTS - VELOCITY DISTRIBUTION

—?-jﬁ.p7dA+'i’-jﬁ.§dA=0

A A

T-Iﬁ.p7dA= -pmr +(p‘1r +% )nr’
A

2 dp
= — Jdx
nr

(dp / dx) INDEPENDENT
OF r.

INTEGRATION
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FORCED CONVECTION INSIDE DUCTS _
LAMINAR FLOWS IN DUCTS - VELOCITY DISTRIBUTION

Y

U= L(—dﬁjrz—t-c
4p\ dx

Q : VOLUME FLOW RATE.
A : FLOW SECTION
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FORCED CONVECTION INSIDE DUCTS
'/ LAMINAR FLOWS IN DUCTS - PRESSURE DROP AND FRICTION FACTOR

LAMINAR FLOW IN DUCTS - PRESSURE DROP AND
FRICTION FACTOR

e CONSIDER NOW A CONTROL VOLUME BOUNDED BY
THE TUBE WALL AND TWO PLANES PERPENDICULAR
TO THE AXIS AND A DISTANCE dx APART.

rdp
2dx "

SELECTED CONTROL
VOLUME

» DIVIDE BY: %pU;

» DEFINE FRICTION |
FACTOR AS:

A,
f—}_ U2
2p "
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FORCED CONVECTION INSIDE DUCTS
LAMINAR FLOWS IN DUCTS - PRESSURE DROP AND FRICTION FACTOR

» FRICTION FACTOR

FRICTION FACTOR
FOR LAMINAR
FLOWS IN TUBES
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FORCED CONVECTION INSIDE DUCTS
LAMINAR FLOWS IN DUCTS - PRESSURE DROP AND FRICTION FACTOR

e TOTAL PRESSURE DROP IN A TUBE OF LENGTH L.

f 1 pU: 1
277" D
INTEGRATION
BETWEEN THE o
ENTRANCE AND EXIT
OF THE TUBE

Y

AP=—-\dp=\| f-pU,—=dx=f-pU,
2 0 2 2

L

D D

64
Re,

f=
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FORCED CONVECTION INSIDE DUCTS
LAMINAR FLOWS IN DUCTS - BULK TEMPERATURE

BULK TEMPERATURE

e FOR FLOW OVER A FLAT PLATE, THE CONVECTION
HEAT TRANSFER COEFFICIENT WAS DEFINED AS:

r

B =1
A
{ 1S THE POTENTIAL STREAM TEMPERATURE.

e IN A TUBE FLOW, THERE IS NO DISCERNIBLE FREE
STREAM CONDITION.

e THE CENTERLINE TEMPERATURE OF A TUBE FLOW
IS NOT EASILY DETERMINABLE.

e CONSEQUENTLY, FOR A FULLY DEVELOPED PIPE
FLOW IT IS CUSTOMARY TO DEFINE A "BULK TEM-
PERATURE" AS:

J:E)c Junrdr

I, =R
Jopc Ju2rdr

» THE NUMERATOR REPRESENTS THE TOTAL ENERGY
FLOW THROUGH THE PIPE.

» THE DENOMINATOR REPRESENTS THE PRODUCT OF THE
MASS FLOW AND THE SPECIFIC HEAT INTEGRATED OVER
THE FLOW AREA.
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FORCED CONVECTION INSIDE DUCTS
LAMINAR FLOWS IN DUCTS - BULK TEMPERATURE

e WITH THE DEFINITION OF THE "BULK TEMPERATURE"
THE LOCAL HEAT TRANSFER COEFFICIENT IN A PIPE
FLOW IS GIVEN BY:

h=—1
i tw-_tb

e IN PRACTICE, IN A HEATED TUBE, AN ENERGY BALAN-
CE MAY BE USED TO DETERMINE THE BULK TEMPE-
RATURE AND ITS VARIATION ALONG THE TUBE.

"

e TWO CASES WILL BE CONSIDERED:

1. CONSTANT SURFACE HEAT FLUX.
2. CONSTANT SURFACE TEMPERATURE.
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FORCED CONVECTION INSIDE DUCTS
LAMINAR FLOWS IN DUCTS - DETERMINATION OF THE BULK TEMPERATURE

e DETERMINATION OF THE BULK TEMPERATURE BY
ENERGY BALANCE.

» CONSTANT SURFACE HEAT FLUX

| q.
)

Control volume

dx -

X x + dx

h h+£’1dx
dx

Figure 4.22 Control volume for internal flow in a tube.

111 : MASS FLOW RATE
{, : INLET TEMPERATURE
h.: INLET ENTHALPY

- KINETIC END POTENTIAL ENERGIES, VISCOUS DISSIPATION
AND AXIAL HEAT CONDUCTION ARE NEGLIGIBLE.
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FORCED CONVECTION INSIDE DUCTS
LAMINAR FLOWS IN DUCTS - DETERMINATION OF THE BULK TEMPERATURE

» (CONSTANT SURFACE HEAT FLUX)

S .o ENERGY
L n.phvdA + L n.q"dA=0 CONSERVATION

EQUATION

SELECTED CONTROL
VOLUME IN THE
ABOVE FIGURE

INTEGRATION:
h=h and h=h|
x=0 and x=x Y

Hx)— =2 g
_ n

h(x)—h =2, (4,(x)-1) —=

() =1, + 52 g
mc

f

p
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FORCED CONVECTION INSIDE DUCTS

LAMINAR FLOWS IN DUCTS - DETERMINATION OF THE BULK TEMPERATURE

» CONSTANT SURFACE TEMPERATURE

dn="2 = =qlde

q.(x) = h[t, —t,(x)] —=

dh = det .

d _nD h"dx
t,—t(x) mc,

INTEGRATION —l

ln(tw‘ —t,(x))=- -g.?D j:hcdx +C'

l

t, —t,(x)=expC’ -exp(—gj:hcdx}
mc

¥

t,—t,(x)= Cexp[———jh dx)
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FORCED CONVECTION INSIDE DUCTS
LAMINAR FLOWS IN DUCTS - DETERMINATION OF THE BULK TEMPERATURE

» (CONSTANT SURFACE TEMPERATURE)

t, —t,(x)= Cexp(—;—gfhcdx)

| BOUNDARY CONDITIONS
x=0 ¢ —t,=t,—1t

C=t, —t,

[ —1
w b(x) — e.xp
t, —t

TEMPERATURE AT THE
EXIT OF THE TUBE.

x=1L
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FORCED CONVECTION INSIDE DUCTS
LAMINAR FLOWS IN DUCTS - DETERMINATION OF THE BULK TEMPERATURE

- IF h CAN BE TAKEN AS CONSTANT ALONG THE TUBE, THE
DETERMINATION OF ¢ (x IS STRAIGHT FORWARD.

- IF NOT, ITERATIONS ARE REQUIRED TO DETERMINE THE
VALUE OF THE BULK TEMPERATURE.

® BULK TEMPERATURE CONCEPT INTRODUCED HERE IS
APPLICABLE TO BOTH LAMINAR AND TURBULENT

FLOWS.
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" LAMINAR FLOWS IN DUCTS - HEAT TRANSFER COEFFICIENT

LAMINAR FLOW IN DUCTS - HEAT TRANSFER
COEFFICIENT

e CONTRARILY TO VELOCITY DISTRIBUTION, ANALY-
TICAL INVESTIGATION OF THE TEMPERATURE DISTRI-
BUTION AND ,CONSEQUENTLY, THE CONVECTION
HEAT TRANSFER COEFFICIENT IS COMPLEX.

IN A CIRCULAR TUBE WITH UNIFORM WALIL HEAT FLUX
AND FULLY DEVELOPED LAMINAR FLOW, IT IS ANALY-
TICALLY FOUND THAT:
_hD

k,

Nu, = 4364

i.e., Nu, IS INDEPENDENT OF Re, , Pr AND AXIAL

LOCATION.

» IN THIS ANALYSIS, IT IS ASSUMED THAT THE VELOCITY
DISTRIBUTION IS GIVEN BY THAT CORRESPONDING TO
ISOTHERMAL FLUID FLOWS.

FOR CONSTANT WALL TEMPERATURE CONDITION, IT IS
FOUND THAT:

Nu, = h;cD =3.66

/

» AGAIN ISOTHERMAL FLUID FLOW VELOCITY DISTRIBUTION
IS USED.
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FORCED CONVECTION INSIDE DUCTS
LAMINAR FLOWS IN DUCTS - HEAT TRANSFER COEFFICIENT

e THE USE OF A VELOCITY DISTRIBUTION CORRES-
PONDING TO ISOTHERMAL FLUID FLOW CONDITION
IS ONLY VALID FOR SMALL TEMPERATURE
DIFFERENCE BETWEEN THE FLUID AND WALL
TEMPERATURE.

e FOR LARGE TEMPERATURE DIFFERENCES, THE FLUID
VELOCITY IS INFLUENCED BY THESE DIFFERENCES
AS SKETCHED IN THE EOLLOWING FIGURE:

Figure 4.23 Influence of large temperature differences on velocity distribution
in a tube
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FORCED CONVECTION INSIDE DUCTS
LAMINAR FLOWS IN DUCTS - HEAT TRANSFER COEFFICIENT

» CURVE (b) IS THE VELOCITY DISTRIBUTION FOR AN ISO-
THERMAL OR SMALL TEMPERATURE DIFFERENCE FLOW.

» CURVE (a) IS THE VELOCITY DISTRIBUTION WHEN THE
WALL HEATS A LIQUID OR COOLS A GAS.

» CURVE (c) IS THE VELOCITY DISTRIBUTION WHEN THE
WALL COOLS A LIQUID OR HEATS A GAS.

e THE ABOVE PRESENTED HEAT TRANSFER CORRELA-
TIONS ARE ENTICING BY THEIR SIMPLICITY.

e HOWEVER, BECAUSE OF THE VELOCITY PROFILE
CHANGES DUE TO HEATING OR COOLING THEY ARE
NOT ACCURATE.

o THESE CORRELATIONS ARE ONLY APPLICABLE TO
FULLY DEVELOPED FLOWS.

e HOWEVER, THE LENGTH OF THE ENTRANCE REGION
IN A LAMINAR FLOW IS SUBSTANTIAL; IT MAY EVEN
OCCUPY THE ENTIRE LENGTH OF THE TUBE.

e THE FOLLOWING CORRELATION PREDICTS THE CON-
VECTION HEAT TRANSFER COEFFICIENT IN THE EN-
TRANCE REGION.

= BL 56 0.0668(D / L)Re, Pr
k, 1+0.04[(D/ L) Re,, Pr]
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FORCED CONVECTION INSIDE DUCTS
LAMINAR FLOWS IN DUCTS - HEAT TRANSFER COEFFICIENT

BD _, .. 00668(D/L)Re,Pr

Nu,. = ]
° Ok, 1+0.04[(D/ L) Re, Pr]”

Nu,, 1S THE AVERAGE NUSSELT NUMBER.

AS THE PIPE LENGTH INCREASES, THIS CORRELATION
TENDS TO 3.66.

FLUID PROPERTIES ARE CALCULATED AT THE BULK
TEMPERATURE.

THIS CORRELATION IS VALID FOR:

(Q)Rep Pr<100
L

A BETTER CORRELATION FOR LAMINAR FLOWS
(SIEDER AND TATE) IS:

0.14
Nu, =186 Rel’ Pr"” (2)1/3 Le
D | D I 0.

> FLUID PROPERTIES (EXCEPT |l ) ARE EVALUATED AT THE
BULK TEMPERATURE.

> W, IS EVALUATED AT THE WALL TEMPERATURE.

> THE TERM, (p, /pt. )™ TAKES INTO ACCOUNT THE FACT
THAT THE BOUNDARY LAYER AT THE WALL IS STRONGLY
INFLUENCED BY THE TEMPERATURE DEPENDENCE OF THE
VISCOSITY.

> (i, /p.)"" APPLIES FOR HEATING AND COOLING CASES.
» THE EFFECT OF THE ENTRANCE LENGTH IS INCLUDED IN

!

THETERM (D/L)".
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FORCED CONVECTION INSIDE DUCTS
LAMINAR FLOWS IN DUCTS - HEAT TRANSFER COEFFICIENT

0.14
Nu, =186 Re)’ Prm(g)w By
D D L l,l,w

» THE RANGE OF APPLICABILITY:

048 < Pr <16,700

0.0044 < H2 <975
u,

V3 o.l4
(&_}?_‘) B )sr
L/D -
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FORCED CONVECTION INSIDE DUCTS
TURBULENT FLOWS IN DUCTS

TURBULENT FLOWS IN DUCTS.

e IT IS EXPERIMENTALLY VERIFIED THAT:

BLASIUS RELATION: T, = 0.0228pU 2(%)

34
—8—‘ RATIO: 9, L [ H ) %

5 5 00228\pls) U

-1/8
RATIO: 25 — 1.878(@)
.U B

ESTABLISHED FOR A TURBULENT BOUNDARY LAYER ON
A FLAT PLATE CAN BE EXTENDED TO FULLY DEVELOP-
ED TURBULENT FLOWS IN SMOOTH TUBES.

it &
u
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FORCED CONVECTION INSIDE DUCTS _
TURBULENT FLOWS IN DUCTS - VELOCITY DISTRIBUTION

TURBULENT FLOW IN DUCTS - VELOCITY
DISTRIBUTION IN FULLY DEVELOPED REGION

ONE SEVENTH LAW FOR u
A TURBULENT FLOW — =] —
OVER A FLAT PLATE U \ 6

y—> R-r
O > Ror D/2
U-U,,

_ j:2n rudr

U
" n R’

R _ 1/7
U Umj (RR") dr=0817U

" ﬂiRz 0
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FORCED CONVECTION INSIDE DUCTS
TURBULENT FLOWS IN DUCTS - FRICTION FACTOR AND PRESSURE GRADIENT

TURBULENT FLOW IN A DUCTS - FRICTION FACTOR
AND FRICTIONAL PRESSURE GRADIENT

e FRICTION FACTOR

BLASIUS CORRELATION FOR

/4
A TURBULENT FLOW ON A T, =0.0228pU 2 (—J—g)

FLAT PLATE.

T, > T,
6 - D/2

U->U_= Y,

" 0.817 Y

V4
T, = 0.039pU;(E]l’B)

m

1
—_nlU?
2Pm

» VALID FOR:
10* < Re, <5x10° 1= 0312 =0.312

174 174
» IF 0.312 IS REPLACED BY 0.316 (U D Re,
THE CORRELATION IS THEN L v
VALID FOR:
4 5
10° < Re, <10 R UD
e, =—"—
Y
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FORCED CONVECTION INSIDE DUCTS
TURBULENT FLOWS IN DUCTS - FRICTION FACTOR AND PRESSURE GRADIENT

® OTHER FRICTION CORRELATIONS

» PRANDLT CORRELATION:

1
— =20log{Re./f})-08  3,000< Re. <34x10°
77 2 0ested) :

> VON KARMAN CORRELATION:
1 D D 1

——=20log| — |+1.74 —>0.01
N g(] e Repf

€ IS THE RUGOSITY OF THE TUBE WALL.

e FRICTIONAL PRESSURE DROP GRADIENT:
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FORCED CONVECTION INSIDE DUCTS
TURBULENT FLOWS IN DUCTS - HEAT TRANSFER COEFFICIENT

TURBULENT FLOWS IN DUCTS - CONVECTION HEAT
TRANSFER COEFFICIENT

@ HEAT TRANSFER COEFFICIENT ESTABLISHED FOR A
FLAT PLATE:

1,C,

pe U
U

1+ —=(Pr-1

5 (Fr=1

WILL BE APPLIED TO TURBULENT FLOWS IN PIPES
WITH SOME MODIFICATIONS.
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FORCED CONVECTION INSIDE DUCTS

TURBULENT FLOWS IN DUCTS - HEAT TRANSFER COEFFICIENT
(CONVECTION HEAT TRANSFER COEFFICIENT)

TWCP
h=—U
1+=2(Pr-1)
U —> Um — -
-1/8
% _ 1.878[@)
u i
U—-U,
. .
mes = 0817
D -
§="2"
2 Y
1/8
% —oa44 F
U pU D
or
u, 244
U Re,’
Y
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FORCED CONVECTION INSIDE DUCTS
TURBULENT FLOWS IN DUCTS - HEAT TRANSFER COEFFICIENT

(CONVECTION HEAT TRANSFER COEFFICIENT)

-

Y

0.0396 Re;* Pr
NuD = -1/8
1+2.44 Re,*(Pr—1)
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FORCED CONVECTION INSIDE DUCTS
TURBULENT FLOWS IN DUCTS - HEAT TRANSFER COEFFICIENT

(CONVECTION HEAT TRANSFER COEFFICIENT)

00396 Re;* Pr
®  1+244 Re]*(Pr-1)

e THIS CORRELATION WORKS REASONABLY WELL.
e IT IS BETTER TO REPLACE:

244 by 15Pr™

0.0396 ReX* Pr

> =115 Pr R (Pr—1)

» FLUID PROPERTIES ARE DETERMINED AT THE BULK

» Pr NUMBER SHOULD BE CLOSE TO 1.
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FORCED CONVECTION INSIDE DUCTS
TURBULENT FLOWS IN DUCTS - HEAT TRANSFER COEFFICIENT

e OTHER CONVECTION HEAT TRANSFER CORRELA-
TIONS FOR TURBULENT FLOWS IN PIPES.

» IF (tw — t,,) IS LESS THAN 6 °C FOR LIQUIDS OR 60 °C
FOR GASES, USE THE FOLLOWING DITTIUS-BOELTER
CORRELATION:

Nu, =0.023 Rel,‘;'3 Pr”
n = 0.4 FOR HEATING,
n = 0.3 FOR COOLING.

- FLUID PROPERTIES ARE DETERMINED AT THE BULK
TEMPERATURE.

- RANGE OF APPLICABILITY:
0.7 < Pr <160
Re, >10,000

—l-'—>60
D
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FORCED CONVECTION INSIDE DUCTS
TURBULENT FLOWS IN DUCTS - HEAT TRANSFER COEFFICIENT

e OTHER CONVECTION HEAT TRANSFER CORRELA-
TIONS FOR TURBULENT FLOWS IN PIPES.

» 1F (¢, —?,) 1S HIGHER THAN 6 °C FOR LIQUIDS OR 60 °C
FOR GASES, USE:

( 0.14
Nu, =0.027 Re2® Pr'”Lh)
i,

- ALL FLUID PROPERTIES ARE CALCULATED AT THE BULK
FLUID TEMPERATURE, EXCEPT U WHICH IS EVALUATED
AT THE WALL TEMPERATURE.

- RANGE OF APPLICABILITY:
0.7 < Pr <16,700

Re, > 10,000

—Ii>60
D
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FORCED CONVECTION INSIDE DUCTS _
TURBULENT FLOWS IN DUCTS - HEAT TRANSFER COEFFICIENT

e OTHER CONVECTION HEAT TRANSFER CORRELA-
TIONS FOR TURBULENT FLOWS IN PIPES.

» THE FOLLOWING CORRELATION APPLIES TO ROUGH WALL
PIPES (QUITE ACCURATE):

Nu, = Re, Pr(i) _”_b\n
° X \8AM,)

( /2
X =107+12.7(Pr**- 1)\28:) |

- FOR LIQUIDS:
n=0.11 FOR HEATING,
n = 0.25 FOR COOLING.
- FORGASES: n=0.
- RANGE OF APPLICABILITY:
10* <'Re, < 5.x10°
2 < Pr <140 ~5% Error
05<Pr<2000 ~10% Error

0.08 < <49
W,

- ALL PHYSICAL PROPERTIES, EXCEPT L ARE EVALUAT-
ED AT THE FLUID BULK TEMPERATURE.
- U IS EVALUATED AT THE WALL TEMPERATURE.

- f IS DETERMINED BY USING AN AD HOC CORRELATION.
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FORCED CONVECTION INSIDE DUCTS
TURBULENT FLOWS IN DUCTS - HEAT TRANSFER COEFFICIENT

e THE CORRELATIONS OBTAINED FOR CIRCULAR
TUBES ON:

- FRICTION FACTORS,
- FRICTIONAL PRESSURE GRADIENT, AND
- CONVECTION HEAT TRANSFER COEFFICIENT

CAN BE APPLIED TO NON CIRCULAR TUBES BY REP-
LACING THE DIAMETER (D) APPEARING IN THESE
CORRELATIONS BY THE HYDRAULIC DIAMETER DE-
FINED AS:

_ 4xFLOW SECTION 44
"  WETTED PERIMETER P

» FOR EXAMPLE, THE HYDRAULIC DIAMETER OF AN ANNU-
LAR FLOW SECTION WITH INNER DIAMETER D, AND OUT-
ER DIAMETER D, IS:

4%(D22 “Dlz)
Dh = = D2 - Dl
(D, + D))

END CONVECTION
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