CONVECTION

• WE HAVE SEEN THAT HEAT TRANSFER FROM A SOLID TO A LIQUID IS GOVERNED BY NEWTON'S LAW OF COOLING:

$$q_{cv} = h_c A \big(t_w - t_f \big)$$

- UP TO NOW, WE HAVE SUPPOSED THAT , THE CONVECTION HEAT TRANSFER COEFFICIENT, $h_{\rm c}$, was known.
- THE OBJECTIVES OF THIS CHAPTER ARE:
 - TO DISCUSS THE BASICS OF HEAT CONVECTION IN FLUIDS, AND
 - TO PRESENT METHODS TO PREDICT THE VALUE OF HEAT TRANSFER COEFFICIENT.
- CONVECTION IS THE TERM USED FOR HEAT TRANS-FER IN A FLUID BECAUSE OF A COMBINATION OF:
 - CONDUCTION DUE TO MOLECULAR INTERACTIONS, AND
 - ENERGY TRANSPORT DUE TO THE MOTION OF THE FLUID BULK.
- THE MOTION OF THE FLUID BULK BRINGS THE HOT REGIONS IN CONTACT WITH THE COLD REGIONS.
- THE MOTION OF THE FLUID BULK MAY BE SUSTAIN-ED:
 - BY A THERMALLY INDUCED DENSITY GRADIENT (NATU-RAL) CONVECTION, OR
 - BY A PRESSURE DIFFERENCE CREATED BY A PUMP (FORCED CONVECTION).

CONVECTION - GENERAL

Ţ

- ANALYTICAL DETERMINATION OF h_c REQUIRES THE SIMULTANEOUS SOLUTION OF:
 - MASS
 - MOMENTUM, AND
 - ENERGY

CONSERVATION EQUATIONS.

• THE ANALYTICAL SOLUTION OF THESE EQUATIONS IS VERY DIFFICULT AND IT IS ONLY POSSIBLE FOR VERY SIMPLE CASES.

- ► THE LOWER PLATE IS AT REST.
- THE UPPER PLATE MOVES WITH A CONSTANT VELOCITY UNDER THE EFFECT OF A FORCE F.
- ► THE DISTANCE BETWEEN THE PLATES IS SMALL.
- ► THE SURFACE AREA OF THE UPPER PLATE IS: A.
- BECAUSE OF THE NON SLIP CONDITION ON THE WALLS THE FLUID VELOCITY:
 - ► AT THE LOWER PLATE IS ZERO,
 - ► AT THE UPPER PLATE IS U.

• UNDER THESE CONDITIONS, A LINEAR VELOCITY DIS-TRIBUTION DEVELOPS BETWEEN THE PLATES:

$$u=\frac{U}{e}y$$

• THE SLOPE:

$$\frac{du}{dy} = \frac{U}{e}$$

• THE SHEAR STRESS:

$$\tau = \frac{F}{A}$$

• IF THE FORCE F (or $\tau = F / A$) APPLIED TO THE UPPER PLATE CHANGES (i.e., UPPER PLATE VELOCITY), du / dyCHANGES AS:

• WE SEE THAT:

$$\tau \sim \frac{du}{dy}$$

OR

$$\tau = \mu \frac{du}{dy}$$

- μ IS CALLED " THE DYNAMIC VISCOSITY."
- IN A MORE GENERAL WAY, CONSIDER A LAMINAR FLOW OVER A PLANE WALL.
- THE VELOCITY DISTRIBUTION HAS THE FOLLOWING FORM:

- THIS DISTRIBUTION IS NOT LINEAR.
- SELECT A PLANE SS PARALLEL TO THE WALL.
- FLUID LAYERS ON EITHER SIDE OF SS EXPERIENCE A SHEARING FORCE DUE TO THEIR RELATIVE MOTION.
- THE SHEAR STRESS IS GIVEN BY:

$$\tau = \mu \left(\frac{du}{dy}\right)_{ss}$$

• THE RATIO OF THE DYNAMIC VISCOSITY TO THE SPECIFIC MASS:

$$v = \frac{\mu}{\rho}$$

IS CALLED "KINEMATIC VISCOSITY."

• <u>UNITS</u>:

$$\mu = \frac{\tau}{\frac{du}{dy}} = \frac{F}{L^2} \frac{T}{L} L = \frac{FT}{L^2} \left(\frac{Ns}{m^2}\right)$$
$$\nu = \frac{\mu}{\rho} = \frac{L^2}{T} \left(\frac{m^2}{s}\right)$$
$$1N = 1 kg \times 1 \frac{m}{s^2}$$

PAGE 4.7

.

BASED ON THE ABOVE DISCUSSION AN ESTIMATION OF THE "DYNAMIC VISCOSITY" CAN BE DONE:
IF THEY ARE <i>n</i> MOLECULES PER UNIT VOLUME OF THE DILUTE GAS, APPROXIMATELY:
- (1/3) HAVE AVERAGE VELOCITY (\overline{v}) PARALLEL TO THE <i>y</i> -axis.
► FROM THESE MOLECULES:
- THE HALF ($\frac{n}{6}$) HAVE AN AVERAGE VELOCITY IN
THE DIRECTION OF y^+ , AND
- THE OTHER HALF $\left(\begin{array}{c} \frac{n}{6} \end{array} \right)$ IN THE DIRECTION OF y^{-1} . CONSEQUENTLY:
$- \frac{n\overline{v}}{6}$ MOLECULES CROSS <i>SS</i> PER UNIT SURFACE AND
UNIT TIME FROM ABOVE TO BELOW, AND
- VICE VERSA.
• MOLECULES COMING FROM ABOVE SS UNDERGO THEIR LAST COLLISION AT A DISTANCE EQUAL TO THE "MEAN FREE PATH" λ ,
- THEIR FLOW VELOCITY IS: $u(y + \lambda)$
- THEIR MOMENTUM: $mu(y + \lambda)$
MOLECULES FROM BELOW:
- VELOCITY: $u(y-\lambda)$
- MOMENTUM: $mu(y-\lambda)$

FLUID CONSERVATION EQUUATIONS - LAMINAR FLOW

OBJECTIVE:

DISCUSS THE BASIC ELEMENTS THAT ENTER IN THE ES-TABLISHMENT OF THE CONSERVATION EQUATIONS FOR AN INCOMPRESSIBLE FLOW.

CONVECTION - CONSERVATION EQS.- TURBULENT FLOW

CONVECTION - CONSERVATION EQS.- TURBULENT FLOW

- BECAUSE OF THE RANDOMLY FLUCTUATING VELO-CITIES, THE FLUID PARTICLES DO NOT STAY IN ONE LAYER (OR STREAMLINE) AND FOLLOWS A TORTUOUS PATH.
- CONSEQUENTLY, A MIXING OCCURS BETWEEN FLUID LAYERS AND THIS INCREASES THE HEAT AND MO-MENTUM EXCHANGES.
- THE AVERAGE OF A FLOW PARAMETER IS GIVEN BY:

$$\bar{f} = \frac{1}{\Delta \tau_1} \int_0^{\Delta \tau_1} f \, d\tau \qquad \text{INDEPENDENT OF TIME} \\ \text{FOR STEADY FLOW}$$

- THE TIME INTERVAL, $\Delta \tau_1$, SHOULD BE LARGE TO EXCEED AMPLY THE PERIOD OF THE FLUCTUATIONS.
- THE TIME AVERAGE OF f':

$$\bar{f}' = \frac{1}{\Delta \tau_1} \int_0^{\Delta \tau_1} f' d\tau = \frac{1}{\Delta \tau_1} \int_0^{\Delta \tau_1} (f - \bar{f}) d\tau = \bar{f} - \bar{f} = 0$$

CONVECTION - CONSERVATION EQUATIONS- TURBULENT FLOW

CONSERVATION EQUATIONS FOR STEADY TURBULENT FLOW

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$

$$\rho \left(\frac{\partial u}{\partial \tau} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} \right) = -\frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) + \rho g_x$$

$$\rho \left(\frac{\partial v}{\partial \tau} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} \right) = -\frac{\partial p}{\partial y} + \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right) + \rho g_y$$

$$\rho \left(\frac{\partial w}{\partial \tau} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} \right) = -\frac{\partial p}{\partial z} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) + \rho g_z$$

$$\rho c_p \left(\frac{\partial t}{\partial \tau} + u \frac{\partial t}{\partial x} + v \frac{\partial t}{\partial y} + w \frac{\partial t}{\partial z} \right) = k_f \left(\frac{\partial^2 t}{\partial x^2} + \frac{\partial^2 t}{\partial y^2} + \frac{\partial^2 t}{\partial z^2} \right)$$
WHERE VISCOUS DISSIPATION TERM, $\mu \phi$, IS IGNORED.

PAGE 4.20

CONVECTION - CONSERVATION EQUATIONS - TURBULENT FLOW
CONSERVATION EQUATIONS FOR STEADY TURBULENT FLOW
• MASS CONSERVATION EQUATION

$$\frac{\partial \overline{u}}{\partial x} + \frac{\partial \overline{v}}{\partial y} + \frac{\partial \overline{w}}{\partial z} = 0$$
• MOMENTUM CONSERVATION EQUATIONS

$$p\left(\frac{\partial \overline{u}}{\partial t} + \overline{u}\frac{\partial \overline{u}}{\partial x} + \overline{v}\frac{\partial \overline{u}}{\partial y} + \overline{w}\frac{\partial \overline{u}}{\partial z}\right) = -\frac{\partial \overline{p}}{\partial x} + \mu \nabla^2 \overline{u} \left[-\frac{\partial}{\partial x}\rho \overline{u'v'} - \frac{\partial}{\partial y}\rho \overline{u'v'} - \frac{\partial}{\partial z}\rho \overline{u'w'}\right]$$

$$p\left(\frac{\partial \overline{v}}{\partial t} + \overline{u}\frac{\partial \overline{v}}{\partial x} + \overline{v}\frac{\partial \overline{v}}{\partial y} + \overline{w}\frac{\partial \overline{v}}{\partial z}\right) = -\frac{\partial \overline{p}}{\partial y} + \mu \nabla^2 \overline{v} \left[-\frac{\partial}{\partial x}\rho \overline{u'v'} - \frac{\partial}{\partial y}\rho \overline{v'w'} - \frac{\partial}{\partial z}\rho \overline{v'w'}\right]$$

$$p\left(\frac{\partial \overline{v}}{\partial t} + \overline{u}\frac{\partial \overline{w}}{\partial x} + \overline{v}\frac{\partial \overline{w}}{\partial y} + \overline{w}\frac{\partial \overline{w}}{\partial z}\right) = -\frac{\partial \overline{p}}{\partial z} + \mu \nabla^2 \overline{w} \left[-\frac{\partial}{\partial x}\rho \overline{u'w'} - \frac{\partial}{\partial y}\rho \overline{v'w'} - \frac{\partial}{\partial z}\rho \overline{w'^2}\right]$$
Body forces ignored
• ENERGY CONSERVATION EQUATION

$$pc_p\left(\frac{\partial \overline{t}}{\partial t} + u\frac{\partial \overline{t}}{\partial x} + v\frac{\partial \overline{t}}{\partial y} + w\frac{\partial \overline{t}}{\partial z}\right) = k \nabla^2 \overline{t} \left[-\frac{\partial}{\partial x}\rho c_p \overline{u't'} - \frac{\partial}{\partial z}\rho c_p \overline{w't'}\right]$$

$$\overline{\nabla^2} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial}{\partial z^2}$$

PAGE 4.22

CONVECTION - CONSERVATION EQUATIONS.- TURBULENT FLOW

CONVECTION - BOUNDARY LAYER

CONVECTION - BOUNDARY LAYER

 BASED ON THE ABOVE OBSERVATION, PRANDLT - FOR SMALL VISCOSITY FLUIDS, AND - LARGE VELOCITIES DIVIDED THE FLOW ON THE WALL INTO TWO **REGIONS:** ► A VERY THIN LAYER (BOUNDARY LAYER) IN THE IMME-DIATE NEIGHBOR OF THE WALL IN WHICH THE VELOCITY **INCREASES RAPIDLY WITH THE DISTANCE TO THE WALL.** i.e., THERE ARE: - HIGH GRADIENTS - HIGH SHEAR STRESSES. ► A POTENTIAL FLOW REGION, OUTSIDE OF THE BOUN-DARY LAYER, WHERE THERE IS ALMOST NO VELOCITY GRADIENT, i.e., NO VISCOUS STRESS. • THE LIMIT OF THE BOUNDARY LAYER (BOUNDARY LAYER THICKNESS, DENOTED BY δ) IS "THE DISTANCE FROM THE WALL WHERE THE FLOW **VELOCITY REACHES 99% OF THE FREE STREAM** VELOCITY." • A BOUNDARY LAYER CAN BE: LAMINAR, OR TURBULENT.

LAMINAR BOUNDARY LAYER

- FLOW IN THE BOUNDARY LAYER IS LAMINAR WHEN THE FLUID PARTICLES MOVE ALONG THE STREAM LINES IN AN ORDERLY MANNER.
- THE CRITERION FOR A FLOW OVER A FLAT PLATE TO BE LAMINAR IS:

$$Re_{x} = \frac{\rho U x}{\mu} < 5 \times 10^{\circ}$$

- THE ANALYSIS OF THE BOUNDARY LAYER CAN BE CONDUCTED BY USING:
 - 1. LOCAL MASS, MOMENTUM AND ENERGY CONSER-VATION EQUATIONS, OR
 - 2. AN APPROXIMATE METHOD BASED ON THE INTEG-RAL CONSERVATION EQUATIONS OF MASS, MO-MENTUM AND ENERGY.

CONVECTION - LAMINAR BOUNDARY LAYER - LOCAL CONSERVATION EQS.

CONVECTION - LAMINAR BOUNDARY LAYER - LOCAL CONSERVATION EQS.

CONVECTION - LAMINAR BOUNDARY LAYER - LOCAL CONSERVATION EQS.

- ENERGY CONSERVATION EQUATION
 - IF $t_{ij} \neq t_{f}$ A THERMAL BOUNDARY LAYER FORMS ON THE PLATE.
 - THROUGH THIS LAYER, THE FLUID TEMPERATURE MAKES THE TRANSITION FROM THE WALL TEMPERATURE, t_w , TO THE FREE STREAM TEMPERATURE, t_c .
 - THE LIMIT OF THE THERMAL BOUNDARY LAYER (BOUNDARY LAYER THICKNESS, $\delta_{,}$) IS THE DISTANCE FROM THE WALL WHERE THE FLOW TEMPERATURE REACHES 99% OF THE FREE STREAM TEMPERATURE.
 - THE THICKNESS OF THE THERMAL BOUNDARY LAYER IS IN THE SAME ORDER OF MAGNITUDE OF THE THICKNESS OF THE VELOCITY BOUNDARY LAYER.
 - ► HOWEVER, THEY ARE NOT NECESSARILY EQUAL.

CONSERVATION E	QUATIONS - INTEGRAL FORMULATION
• THE OBJECT LAYER IS TO	IVE OF THE STUDY OF A BOUNDARY DETERMINE ON THE WALL:
► THE SHEA	R FORCES, AND
► THE HEAT	TRANSFER COEFFICIENT.
• THE SOLUTION HAVE JUST D QUANTITIES THE SCOPE O	ON OF THE GOVERNING EQUATIONS WE DISCUSSED TO OBTAIN THE ABOVE IS QUITE DIFFICULT AND IS NOT WITHIN OF THIS COURSE.
WE WILL DIS ED "THE INT:	CUSS NOW A SIMPLE APPROACH CALL- EGRAL METHOD:"
► TO ANALY	ZE THE BOUNDARY LAYER, AND
 TO DETER HEAT TRA 	MINE THE SHEAR STRESSES AND THE NSFER COEFFICIENT.
• THIS METHO IN 1947.	D WAS INTRODUCED BY " von KARMAN"
 INTEGRAL M ATTENTION BOUNDARY IOR OF THE S 	ETHOD CONSISTS OF FIXING THE ON THE OVER-ALL BEHAVIOR OF THE LAYER INSTEAD OF THE LOCAL BEHAV- SAME LAYER.
 TO DERIVE T EQUATIONS, TIONS (CHAIL 	HE INTEGRAL BOUNDARY LAYER THE INTEGRAL CONSERVATION EQUA- PTER 2) WILL BE APPLIED:
\blacktriangleright TO A FIX (CONTROL VOLUME
► UNDER ST	TEADY STATE CONDITIONS.

layer

i V

CONVECTION - LAMINAR BOUNDARY LAYER

• •

MOMENTUM CONSERVATION EQUATION - INTEGRAL FORMULATION

$$\frac{-\vec{n}_{ed}\left[\int_{0}^{t}\rho u^{2}dy\right]_{x} - \vec{n}_{ed}\left[\int_{0}^{t}\rho u^{2}dy\right]_{x} - \vec{n}_{ed}\frac{d}{dx}\left[\int_{0}^{t}\rho u^{2}dy\right]_{x}dx}{+U(x)\vec{i}\frac{d}{dx}\left[\int_{0}^{t}\rho udy\right]_{x}dx - \vec{n}_{ab}p_{x}l - \vec{n}_{ed}(p_{x} + \frac{dp_{x}}{dx}dx)l - \tau_{y}\vec{i}dx = 0}\right]}{\vec{x}\vec{i}}$$

$$\frac{\vec{x}\vec{i}}{\text{KNOWING THAT}} \vec{n}_{ab}.\vec{i} = -1 \vec{n}_{ed}.\vec{i} = 1$$

$$\frac{-\frac{d}{dx}\int_{0}^{t}\rho u^{2}dy + U(x)\frac{d}{dx}\int_{0}^{t}\rho udy = \frac{dp}{dx}l + \tau_{w}}$$

$$\frac{\text{ADDING AND SUBTRACTING}}{\frac{dU(x)}{dx}\left[\int_{0}^{t}\rho udy\right]}$$

$$\frac{\rho\frac{d}{dx}\int_{0}^{t}(U(x) - u)udy - \rho\frac{dU(x)}{dx}\int_{0}^{t}udy = \frac{dp}{dx}l + \tau_{w}}$$

CONVECTION - LAMINAR BOUNDARY LAYER

CONVECTION - LAMINAR BOUNDARY LAYER

ENERGY CONSERVATION EQUATION - INTEGRAL FORMULATION

CONVECTION - LAMINAR BOUNDARY LAYER
ENERGY CONSERVATION EQUATION - INTEGRAL FORMULATION

$$\begin{bmatrix}
E_{ab} + E_{cd} + E_{bc} + \int_{A_{a}} \vec{n}_{da} \cdot \vec{q}'' dA = 0
\end{bmatrix}$$

$$\begin{bmatrix}
E_{ab} = \int_{A_{a}} \vec{n}_{ab} \rho(u\vec{i}) h dA = -\left[\int_{0}^{i} \rho u h dy\right]_{x}$$

$$E_{cd} = \int_{A_{a}} \vec{n}_{ab} \rho(u\vec{i}) h dA = \left[\int_{0}^{i} \rho u h dy\right]_{x}$$

$$= \left[\int_{0}^{i} \rho u h dy\right]_{x} + \frac{d}{dx} \left[\int_{0}^{i} \rho u h dy\right]_{x} dx$$

$$\begin{bmatrix}
E_{bc} = -\frac{d}{dx} \left[\int_{0}^{i} \rho u h, dy\right]_{x} dx$$

$$\int_{A_{a}} \vec{n}_{ab} \cdot \vec{q}'' dA = \vec{n}_{ab} \cdot \vec{q}'' dx$$

$$= \vec{n}_{ac} \cdot \left[-k_{f} \frac{dt}{dy}\right]_{y=0} \vec{j} dx = k_{f} \frac{dt}{dy}_{y=0} dx$$

$$\begin{bmatrix}
\frac{d}{dx} \left[\int_{0}^{i} \rho u h dy\right] - \frac{d}{dx} \left[\int_{0}^{i} \rho u h_{f} dy\right] + k_{f} \frac{dt}{dy}_{y=0} = 0$$
or

CONVECTION - LAMINAR BOUNDARY LAYER

ENERGY CONSERVATION EQUATION - INTEGRAL FORMULATION

$$\frac{\left|\frac{d}{dx}\int_{0}^{t}\rho u(h_{f}-h)dy = k_{f}\frac{dt}{dy}\right|_{y=0}}{h_{f}-h = c_{p}(t_{f}-t)}$$

$$\frac{\left|\frac{d}{dx}\int_{0}^{\delta_{i}(x)}c_{p}\rho u(t_{f}-t)dy = k_{f}\frac{dt}{dy}\right|_{y=0}}{\left|\frac{d}{dx}\int_{0}^{\delta_{i}(x)}c_{p}\rho u(t_{f}-t)dy = k_{f}\frac{dt}{dy}\right|_{y=0}}$$

$$l \rightarrow \delta_i(x)$$

THIS IS THE INTEGRAL ENERGY EQUATION OF A STEADY, LAMINAR AND INCOMPRESSIBLE BOUNDARY LAYER.

۰...

TURBULENT BOUNDARY LAYER
 WE HAVE JUST DISCUSSED THE LAMINAR BOUNDARY LAYER.
 HOWEVER, IN MANY ENGINEERING APPLICATIONS, THE BOUNDARY LAYER IS TURBULENT.
 IN LAMINAR BOUNDARIES, MOMENTUM AND HEAT ARE TRANSPORTED ACROSS THE FLUID LAYERS ONLY BY MOLECULAR DIFFUSION.
 CONSEQUENTLY, THE CROSS FLOW OF PROPERTIES IS SMALL.
 IN TURBULENT FLOWS, THE MIXING BETWEEN ADJACENT FLUID LAYERS IS SIMULTANEOUSLY GOVERNED BY TWO MECHANISMS:
 MOLECULAR TRANSPORT, AND
 MACROSCOPIC TRANSPORT DUE TO FLUID LUMPS (PARTI- CLES).
 BECAUSE OF THE SECOND MECHANISM, MOMENTUM AND ENERGY TRANSPORT IS GREATLY ENHANCED.
 TO DISCUSS THE BASIC FEATURES OF TURBULENT BOUNDARY LAYERS WE WILL ASSUME THAT THE GOVERNING EQUATIONS CAN BE OBTAINED FROM SIMPLIFIED LAMINAR BOUNDARY LAYER EQUATIONS.

$$\frac{\partial}{\partial v}\overline{u'v'}$$
 and $\frac{\partial}{\partial v}\overline{v't'}$

CONSIDER THE TWO DIMENSIONAL FLOW IN WHICH THE MEAN VALUE OF THE VELOCITY IS PARALLEL TO THE x-DIRECTION.

Figure 4.11 Turbulent momentum exchange in two dimensional flow.

- BECAUSE OF THE TURBULENT NATURE OF THE FLOW, THE INSTANTANEOUS VELOCITY OF THE FLUID CHANGES CONTINUOUSLY:
 - ► IN DIRECTION, AND
 - ► IN MAGNITUDE.

• THE INSTANTANEOUS VELOCITY COMPONENTS ARE: $u = \overline{u} + u'$ v = v'

- WHILE DISCUSSING THE VISCOSITY, WE HAVE SEEN THAT:
 - AN EXCHANGE OF MOLECULES BETWEEN THE FLUID LAYERS ON EITHER SIDE OF THE PLANE SS PRODUCES A CHANGE IN THE x-DIRECTION MOMENTUM.
 - THIS CHANGE IS CAUSED BY THE EXISTENCE OF A GRA-DIENT IN THE x-DIRECTION VELOCITY.
 - THE MOMENTUM CHANGE PRODUCES A SHEARING FORCE IN THE FLUID PARALLEL TO x-DIRECTION AND DENOTED BY τ_1 .
- IF TURBULENT FLOW VELOCITY FLUCTUATIONS OCCUR BOTH IN x- AND y-DIRECTIONS (CASE STUDIED):
 - THE y-DIRECTION FLUCTUATIONS, v', TRANSPORT FLUID LUMPS (LARGER THAN THE MOLECULAR TRANSPORT).
 - INSTANTANEOUS RATE OF MASS TRANSPORT PER UNIT AREA AND PER UNIT TIME ACROSS SS IS:

 $\rho v'$

 INSTANTANEOUS RATE OF TRANSFER IN THE y-DIREC-TION OF x-DIRECTION MOMENTUM PER UNIT AREA AND TIME ACROSS SS IS:

$$-\rho v'(\overline{u}+u')$$

THE MEANING OF THE "MINUS" SIGN WILL BE DISCUSSED LATER.

• $\overline{v'u'}$ is the time average of the product of u' and v'; It is different from zero.

CONVECTION - TURBULENT BOUNDARY LAYER - TURBULENT SHEAR STRESS

- THE FLUID LUMPS WHICH TRAVEL UPWARD ($\nu' > 0$) AR-RIVE IN A LAYER IN THE FLUID WHERE THE MEAN VELO-CITY \overline{u} IS LARGER THAN THE VELOCITY OF THE LAYER FROM WHICH THEY COME.
- WE WILL ASSUME THAT THESE LUMPS KEEP THEIR ORIGINAL VELOCITY \overline{u} DURING THEIR MIGRATION.
- THEY WILL, THEREFORE, TEND TO SLOW DOWN THE FLUID LUMPS EXISTING IN THEIR DESTINATION LAYER.
- THEREBY, THEY WILL GIVE RISE TO A NEGATIVE u' .
- CONVERSELY IF v' IS NEGATIVE.
- THE OBSERVED VALUE OF u' AT THE NEW DESTINATION WILL BE POSITIVE .

- CONSEQUENTLY, ON THE AVERAGE: A POSITIVE v' IS ASSOCIATED WITH A NEGATIVE u', AND
 - VICE VERSA.
- ► THE TIME AVERAGE OF $\overline{v'u'}$ IS NOT ZERO BUT A NEGA-TIVE QUANTITY.

 $\tau = \tau_1 + \tau_2$ is called total shear stress in turbulent flow.

• THE TURBULENT MOMENTUM TRANSPORT CAN BE RELATED TO THE TIME-AVERAGE VELOCITY GRADI-ENT: $\partial \overline{u}$

BY USING THE "MEAN FREE PATH" CONCEPT INTRO-DUCED DURING THE STUDY OF THE MOLECULAR MOMENTUM TRANSPORT.

- ► IN TURBULENT FLOWS, THE DISTANCE "*l*" TRAVELED BY THE FLUID LUMPS IN THE DIRECTION NORMAL TO THE MEAN FLOW WHILE MAINTAINING THEIR IDENTITY AND PHYSICAL PROPERTIES IS CALLED "MIXING LENGTH."
- CONSIDER A FLUID LUMP LOCATED AT A DISTANCE "!" ABOVE AND BELOW THE SURFACE SS.

• AFTER DEVELOPING IN TAYLOR SERIES, THE VELOCITY OF A LUMP AT (y+l) IS:

$$\overline{u}(y+l) \cong \overline{u}(y) + l \frac{\partial \overline{u}}{\partial y}$$

WHEREAS AT (y-l)

$$\overline{u}(y-l) \cong \overline{u}(y) - l \frac{\partial \overline{u}}{\partial y}$$

• IF THE FLUID LUMP MOVES FROM LAYER (y - l) to the LAYER y under the influence of a positive v', its VELOCITY PARALLEL TO x-DIRECTION WILL BE SMALLER THAN THE VELOCITY PREVAILING IN THE LAYER y BY AN AMOUNT:

$$\overline{u}(y-l) - \overline{u}(y) \cong -l \frac{\partial \overline{u}}{\partial y}$$

SIMILARLY, IF A LUMP OF FLUID ARRIVES TO THE LAYER yFROM LAYER (y+l) UNDER THE INFLUENCE OF A NEGA-TIVE v' ITS VELOCITY WILL BE HIGHER BY AN AMOUNT:

$$\overline{u}(y+l) - \overline{u}(y) \cong l \frac{\partial \overline{u}}{\partial y}$$

► THESE DIFFERENCES IN \overline{u} -VELOCITIES CONSTITUTE THE BASIS OF u' FLUCTUATIONS:

$$u' \cong l \frac{\partial \overline{u}}{\partial y}$$

- USUALLY v' IS OF THE SAME ORDER AS u'.
- ε_m IS NOT A PHYSICAL PROPERTY AS v.
- ε_m DEPENDS ON THE MOTION OF THE FLUID, Re-NUMBER, etc.
- ε_m VARIES FROM POINT TO POINT IN THE FLOW; IT VANISHES NEAR THE WALL.
- $\triangleright \epsilon_m / \nu$ CAN GO AS HIGH AS 500.
- ► V CAN, THEREFORE BE IGNORED IN COMPARISON WITH ε_m .

 ε_m : APPARENT KINEMATIC VISCOSITY

CONVECTION - TURBULENT BOUNDARY LAYER - TURBULENT ENERGY TRANSFER

TRANSFER OF ENERGY

• THE TRANSFER OF ENERGY IN A TURBULENT FLOW CAN BE MODELED IN A WAY SIMILAR TO THAT OF THE MOMENTUM.

 INSTANTANEOUS ENERGY TRANSPORT PER UNIT AREA AND UNIT TIME IN THE y-DIRECTION:

 $\rho c_{p} v'(t)$

WHERE:

$$t = \bar{t} + t'$$

i.e., 7

$$DC_p v'(\bar{t}+t')$$

CONVECTION - TURBULENT BOUNDARY LAYER - TURBULENT ENERGY TRANSFER

USING THE CONCEPT OF MIXING LENGTH WE CAN WRITE THAT:

- v't' is positive in the average.
- THE MINUS SIGN IS INTRODUCED TO RESPECT THE CON-VENTION THAT HEAT FLOW IS POSITIVE IN THE DIREC-TION OF y POSITIVE.
- THEREFORE, THE SECOND LAW OF THERMODYNAMICS IS SATISFIED.
- ► TURBULENT HEAT TRANSFER IS THEN WRITTEN AS:

$$\alpha = \frac{k_f}{c_p \rho}$$
: MOLECULAR DIFFUSIVITY OF HEAT

 $\boldsymbol{\epsilon}_h$: EDDY DIFFUSIVITY OF HEAT

OBJECTIVES: DETERMINE THE WALL FRICTION AND HEAT TRANSFER COEFFICIENTS IN LAMINAR AND TURBULENT BOUNDARY LAYERS.

IN ORDER TO REACH RAPIDLY THE OBJECTIVES "INTEGRAL MOMENTUM AND ENERGY CONSERVATION EQUATIONS" WILL BE USED.

LAMINAR BOUNDARY LAYER

- IN LAMINAR BOUNDARY LAYER, THE FLUID MOTION IS VERY ORDERLY.
- THE FLUID MOTION ALONG A STREAMLINE HAS VELO-CITY COMPONENTS IN *x* AND *y* DIRECTIONS (*u* AND *v*).
- THE VELOCITY COMPONENT *v*, NORMAL TO THE WALL, CONTRIBUTES SIGNIFICANTLY TO MOMENTUM AND ENERGY TRANSFER THROUGH THE BOUNDARY.
- FLUID MOTION NORMAL TO THE WALL IS BROUGHT ABOUT BY THE BOUNDARY LAYER GROWTH IN THE *x*-DIRECTION.

LAMINAR BOUNDARY LAYER.

• CONSIDER A FLAT PLATE OF CONSTANT TEMPERA-TURE PLACED PARALLEL TO THE INCIDENT FLOW AS ILLUSTRATED IN THE FOLLOWING FIGURE.

Figure 4.15 Velocity and thermal boundary layers for a laminar flow past a flat plate.

• U(x) = const. = U

•
$$p(x) = const. = p$$

÷

► PHYSICAL PROPERTIES ARE CONSTANT.

LAMINAR BOUNDARY LAYER.

VELOCITY BOUNDARY LAYER- BOUNDARY LAYER THICKNESS.

$$p \frac{d}{dx} \int_{0}^{\delta(x)} (U(x) - u) u dy + p \frac{dU(x)}{dx} \int_{0}^{\delta(x)} (U(x) - u) dy = \tau_{w}$$

$$U(x) = const. = U$$

$$p(x) = const. = p$$
PHYSICAL PROPERTIES ARE
CONSTANT.
$$p \frac{d}{dx} \int_{0}^{\delta(x)} (U - u) u dy = \tau_{w}$$

$$u(x, y) = a(x) + b(x)y + c(x)y^{2} + d(x)y^{3}$$
BOUNDARY CONDITIONS

$$y = 0 \quad u = 0$$

$$y = \delta \quad u = U$$

$$y = \delta \quad \frac{\partial u}{\partial y} = 0$$

$$y = 0 \quad \frac{\partial^{2} u}{\partial y^{2}} = 0$$

$$a = 0, \quad b = \frac{3}{2} \frac{U}{\delta}, \quad c = 0, \quad d = -\frac{1}{2} \frac{U}{\delta^{3}}$$

• TEMPERATURE OF THE PLATE IS CONSTANT.

÷

.

LAMINAR BOUNDARY LAYER -LOCAL HEAT TRANSFER COEFFICIENT.

- ► IN THE ABOVE DISCUSSION, IT IS ASSUMED THAT THE FLUID PROPERTIES ARE CONSTANT.
- ► IF THERE IS A SUBSTANTIAL DIFFERENCE BETWEEN THE WALL AND FREE STREAM TEMPERATURES, THE FLUID PROPERTIES ARE CALCULATED AT THE "MEAN FILM TEMPERATURE."

$$t_m = \frac{t_w + t_f}{2}$$

 LOCAL AND AVERAGE CONVECTION HEAT TRANSFER COEFFICIENT DERIVED ABOVE ARE VALID FOR:

 $Pr \ge 0.7$

$$Re_x \leq 5 \times 10^5$$

► FOR A CONSTANT SURFACE HEAT FLUX, THE CONVEC-TION HEAT TRANSFER COEFFICIENT IS GIVEN BY:

$$Nu_{x} = 0.453 Re_{x}^{1/2} Pr^{1/3}$$

TURBULENT BOUNDARY LAYER

- DESPITE THE PRESENCE OF A TRANSITION ZONE, IT IS CUSTOMARY TO ASSUME THAT THE TRANSITION FROM LAMINAR TO TURBULENT BOUNDARY LAYER OCCURS SUDDENLY.
- THE TRANSITION LOCATION x_c IS TIED TO REYNOLDS NUMBER:

$$Re_x = \frac{\rho Ux}{\mu}$$

- IF $Re_x \ge 5 \times 10^5$, THE BOUNDARY LAYER IS TURBULENT.
- ANALYTICAL STUDY OF THE TURBULENT BOUNDARY LAYER IS COMPLEX:
 - THIS IS DUE TO THE FACT THAT ε_m IS NOT A PROPERTY OF THE FLUID.
- HERE, BY USING A SIMPLE APPROACH, WE WILL DISCUSS FOR A TURBULENT BOUNDARY LAYER:

1. THE THICKNESS,

٠,

- 2. THE FRICTION COEFFICIENT, AND
- 3. THE HEAT TRANSFER COEFFICIENT.

TURBULENT BOUNDARY LAYER

VELOCITY BOUNDARY LAYER - BOUNDARY LAYER THICKNESS

- THE GENERAL CHARACTERISTICS OF A TURBULENT BOUNDARY LAYER RESEMBLE TO THOSE OF THE LAMINAR BOUNDARY LAYER.
- THE TIME AVERAGE VELOCITY VARIES RAPIDLY FROM ZERO AT THE WALL TO THE UNIFORM VALUE OF THE POTENTIAL CORE.
- BECAUSE OF THE TRANSVERSE FLUCTUATIONS, THE VELOCITY DISTRIBUTION IS MUCH MORE CURVED NEAR THE WALL THAN THAT IN THE LAMINAR FLOW.
- HOWEVER, THIS DISTRIBUTION IS MORE UNIFORM AT THE OUTER EDGE OF THE BOUNDARY LAYER THAN THE LAMINAR COUNTERPART.
- EXPERIMENTS HAVE SHOWN THAT THE VELOCITY DISTRIBUTION IN A TURBULENT BOUNDARY LAYER CAN BE ADEQUATELY DESCRIBED BY:

$$\frac{\overline{u}}{U} = \left(\frac{y}{\delta}\right)^{1/7} \quad \text{ONE SEVENTH LAW}$$

• THIS LAW IS VALID FOR $5 \times 10^5 < Re_x < 10^7$.

• FROM NOW ON, THE BAR WILL BE REMOVED FROM \overline{u} , KNOWING THAT ALL TURBULENT VELOCITIES ARE TIME AVERAGED.

TURBULENT BOUNDARY LAYER -VELOCITY BOUNDARY LAYER

• ALTHOUGH THE "ONE SEVENTH LAW" DESCRIBES WELL THE VELOCITY DISTRIBUTION, IT DOES NOT YIELD THE SHEAR STRESS ON THE WALL:

$$\tau \sim \left(\frac{du}{dy}\right)_{y=0}$$
$$\frac{du}{dy} = \frac{1}{7} \frac{U}{\delta^{1/7}} \frac{1}{y^{6/7}}$$
$$y \to 0 \quad \frac{du}{dy} \to \infty \quad \tau_w \to \infty$$

THIS IS PHYSICALLY NOT ACCEPTABLE.

- IN REALITY "ONE SEVENTH LAW" IS ONLY VALID IN THE BUFFER AND TURBULENT ZONE.
- ► IN THE LAMINAR SUBLAYER, IT IS ASSUMED THAT THE VELOCITY VARIES LINEARLY.
- THE SLOP OF THIS VARIATION IS SELECTED SUCH THAT IT YIELDS THE WALL SHEAR STRESS OBTAINED EXPERIMEN-TALLY BY BLASIUS FOR TURBULENT FLOWS ON SMOOTH PLATES:

$$\tau_{w} = 0.0228 \rho U^{2} \left(\frac{\nu}{U\delta}\right)^{1/2}$$

- THE VELOCITY DISTRIBUTION IN THE LAMINAR SUBLAYER JOINS TO THAT IN THE TURBULENT REGION AT A DISTANCE δ_{s} .
- δ_{s} is called the thickness of the laminar sublayer.

,

Figure 4.17 Velocity profiles in the turbulent zone and laminar sub-layer.

TURBULENT BOUNDARY LAYER -VELOCITY BOUNDARY LAYER

• TO DETERMINE THE THICKNESS OF THE VELOCITY BOUNDARY LAYER WE WILL USE INTEGRAL MOMEN-TUM CONSERVATION EQUATION:

$$\rho \frac{d}{dx} \int_{0}^{\delta(x)} (U(x) - u) u dy + \rho \frac{dU(x)}{dx} \int_{0}^{\delta(x)} (U(x) - u) dy = \tau_{w}$$

$$U(x) = const. = U$$

$$p(x) = const. = p$$
PHYSICAL PROPERTIES ARE
$$\rho \frac{d}{dx} \int_{0}^{\delta(x)} (U - u) u dy = \tau_{w}$$

$$\overline{\frac{u}{U}} = \left(\frac{y}{\delta}\right)^{1/7}$$

$$\tau_{w} = 0.0228 \rho U^{2} \left(\frac{v}{U\delta}\right)^{1/4}$$

$$v = \frac{\mu}{\rho}$$

$$\rho U^{2} \frac{d}{dx} \int_{0}^{\delta} \left(\frac{y}{\delta}\right)^{1/7} \left[1 - \left(\frac{y}{\delta}\right)^{1/7}\right] dy = 0.0228 \rho U^{2} \left(\frac{v}{U\delta}\right)^{1/4}$$

TURBULENT BOUNDARY LAYER -VELOCITY BOUNDARY LAYER

TURBULENT BOUNDARY LAYER - FRICTION COEFFICIENT

۰.

TURBULENT BOUNDARY LAYER - LOCAL HEAT TRANSFER COEFFICIENT

TURBULENT BOUNDARY LAYER - HEAT TRANSFER COEFFICIENT

- REYNOLDS' ANALOGY
 - ► LAMINAR BOUNDARY LAYER

$$\tau = \mu \frac{du}{dy}$$
$$q'' = -k_f \frac{du}{dy}$$

÷

TURBULENT BOUNDARY LAYER - LOCAL HEAT TRANSFER COEFFICIENT

- IT SEEMS THAT THE EFFECT OF THE PRANDLT NUMBER DIFFERING FROM UNITY CAN BE EXPRESSED BY A FACTOR $Pr^{1/3}$.
- THIS FACT IS SOMETIMES APPLIED TO CASES WHERE EXACT SOLUTION TO THE THERMAL BOUNDARY CANNOT BE OBTAINED; EXPERIMENTAL SKIN FRICTION MEA-SUREMENTS ARE USED TO PREDICT HEAT TRANSFER COEFFICIENTS.

.

TURBULENT BOUNDARY LAYER - LOCAL HEAT TRANSFER COEFFICIENT

$$Nu_{x} = \frac{0.0292 Re_{x}^{0.8} Pr}{1 + 2.12 Re_{x}^{-0.1} (Pr-1)}$$

- ► THIS IS THE CONVECTION HEAT TRANSFER CORRELA-TION FOR A TURBULENT FLOW OVER A FLAT PLATE.
- ► APPLICATION CONDITIONS:
 - FLUID PROPERTIES MUST BE EVALUATED AT THE MEAN BOUNDARY LAYER TEMPERATURE.

$$t_m = \frac{t_w + t_f}{2}$$

- $Pr \cong 1$

THE ABOVE CORRELATION IS DIFFICULT TO INTEGRATE.

► THE FOLLOWING CORRELATION GIVE GOOD RESULTS:

TURBULENT BOUNDARY LAYER - LOCAL HEAT TRANSFER COEFFICIENT

$$Nu_{L} = \frac{\overline{h_{c}}L}{k_{f}} = 0.036 Re_{L}^{0.8} Pr^{1/3}$$

- THE ABOVE CORRELATION ASSUMES THAT THE BOUN-DARY LAYER IS TURBULENT STARTING FROM THE LEAD-ING EDGE OF THE PLATE.
- HOWEVER, WE KNOW THAT A PORTION OF THE PLATE IS OCCUPIED BY A LAMINAR BOUNDARY LAYER; THE REST BY TURBULENT BOUNDARY LAYER.
- THE AVERAGE HEAT TRANSFER COEFFICIENT INCLUDING BOTH REGIONS IS THAN GIVEN BY:

FORCED CONVECTION INSIDE DUCTS	
 HEATING AND COOLING OF FLUIDS FLOWING INSIDE A DUCT CONSTITUTE ONE OF THE MOST FREQUENTLY ENCOUNTERED ENGINEERING PROBLEMS. 	
• FLOW INSIDE A DUCT CAN BE:	
► LAMINAR, OR	
► TURBULENT.	
 TURBULENT FLOWS ARE THE MOST WIDELY ENCOUN- TERED TYPE IN THE INDUSTRIAL APPLICATIONS. WHEN A FLUID WITH UNIFORM VELOCITY ENTERS A STRAIGHT PIPE A VELOCITY BOUNDARY LAYER STARTS DEVELOPING. 	
Potential core Boundary layer Completely developed flow	
Entrance length	
Figure 4.19 Flow in the entrance region of a pipe.	

,

PAGE 4,103

LAMINAR FLOWS IN DUCTS - VELOCITY DISTRIBUTION

LAMINAR FLOW IN DUCTS - VELOCITY DISTRIBU-TION IN FULLY DEVELOPED REGION

- THE VELOCITY DISTRIBUTION CAN EASILY DETER-MINED FOR A STEADY STATE LAMINAR FLOW IN THE FULLY DEVELOPED REGION.
- IN THIS REGION, VELOCITY PROFILE DOES NOT CHANGE ALONG THE TUBE.

• IT DEPENDS ONLY ON THE RADIUS, i.e., u = u(r).

LAMINAR FLOWS IN DUCTS - PRESSURE DROP AND FRICTION FACTOR

LAMINAR FLOW IN DUCTS - PRESSURE DROP AND FRICTION FACTOR

• CONSIDER NOW A CONTROL VOLUME BOUNDED BY THE TUBE WALL AND TWO PLANES PERPENDICULAR TO THE AXIS AND A DISTANCE dx APART.

BULK TEMPERATURE

• FOR FLOW OVER A FLAT PLATE, THE CONVECTION HEAT TRANSFER COEFFICIENT WAS DEFINED AS:

$$h_c = \frac{q''}{t_w - t_f}$$

 t_{f} IS THE POTENTIAL STREAM TEMPERATURE.

- IN A TUBE FLOW, THERE IS NO DISCERNIBLE FREE STREAM CONDITION.
- THE CENTERLINE TEMPERATURE OF A TUBE FLOW IS NOT EASILY DETERMINABLE.
- CONSEQUENTLY, FOR A FULLY DEVELOPED PIPE FLOW IT IS CUSTOMARY TO DEFINE A "BULK TEM-PERATURE" AS:

$$t_{b} = \frac{\int_{0}^{R} \rho c_{p} t u 2\pi r dr}{\int_{0}^{R} \rho c_{p} u 2\pi r dr}$$

- THE NUMERATOR REPRESENTS THE TOTAL ENERGY FLOW THROUGH THE PIPE.
- THE DENOMINATOR REPRESENTS THE PRODUCT OF THE MASS FLOW AND THE SPECIFIC HEAT INTEGRATED OVER THE FLOW AREA.

.

LAMINAR FLOWS IN DUCTS - BULK TEMPERATURE

• WITH THE DEFINITION OF THE "BULK TEMPERATURE" THE LOCAL HEAT TRANSFER COEFFICIENT IN A PIPE FLOW IS GIVEN BY:

$$h_c = \frac{q''}{t_w - t_b}$$

- IN PRACTICE, IN A HEATED TUBE, AN ENERGY BALAN-CE MAY BE USED TO DETERMINE THE BULK TEMPE-RATURE AND ITS VARIATION ALONG THE TUBE.
- TWO CASES WILL BE CONSIDERED:
 - CONSTANT SURFACE HEAT FLUX.
 CONSTANT SURFACE TEMPERATURE.

- KINETIC END POTENTIAL ENERGIES, VISCOUS DISSIPATION AND AXIAL HEAT CONDUCTION ARE NEGLIGIBLE.

÷

LAMINAR FLOWS IN DUCTS - DETERMINATION OF THE BULK TEMPERATURE

- IF h_c CAN BE TAKEN AS CONSTANT ALONG THE TUBE, THE DETERMINATION OF $t_b(x)$ IS STRAIGHT FORWARD.
- IF NOT, ITERATIONS ARE REQUIRED TO DETERMINE THE VALUE OF THE BULK TEMPERATURE.
- BULK TEMPERATURE CONCEPT INTRODUCED HERE IS APPLICABLE TO BOTH LAMINAR AND TURBULENT FLOWS.

LAMINAR FLOWS IN DUCTS - HEAT TRANSFER COEFFICIENT

LAMINAR FLOW IN DUCTS - HEAT TRANSFER COEFFICIENT

- CONTRARILY TO VELOCITY DISTRIBUTION, ANALY-TICAL INVESTIGATION OF THE TEMPERATURE DISTRI-BUTION AND ,CONSEQUENTLY, THE CONVECTION HEAT TRANSFER COEFFICIENT IS COMPLEX.
- IN A CIRCULAR TUBE WITH <u>UNIFORM WALL HEAT FLUX</u> AND FULLY DEVELOPED LAMINAR FLOW, IT IS ANALY-TICALLY FOUND THAT:

$$Nu_D = \frac{h_c D}{k_f} = 4.364$$

i.e., Nu_D is independent of Re_D , Pr and axial location.

- IN THIS ANALYSIS, IT IS ASSUMED THAT THE VELOCITY DISTRIBUTION IS GIVEN BY THAT CORRESPONDING TO ISOTHERMAL FLUID FLOWS.
- FOR CONSTANT WALL TEMPERATURE CONDITION, IT IS FOUND THAT:

$$Nu_D = \frac{h_c D}{k_f} = 3.66$$

 AGAIN ISOTHERMAL FLUID FLOW VELOCITY DISTRIBUTION IS USED.

PAGE 4.120

LAMINAR FLOWS IN DUCTS - HEAT TRANSFER COEFFICIENT

- THE USE OF A VELOCITY DISTRIBUTION CORRES-PONDING TO ISOTHERMAL FLUID FLOW CONDITION IS ONLY VALID FOR SMALL TEMPERATURE DIFFERENCE BETWEEN THE FLUID AND WALL TEMPERATURE.
- FOR LARGE TEMPERATURE DIFFERENCES, THE FLUID VELOCITY IS INFLUENCED BY THESE DIFFERENCES AS SKETCHED IN THE FOLLOWING FIGURE:

LAMINAR FLOWS IN DUCTS - HEAT TRANSFER COEFFICIENT

- CURVE (b) IS THE VELOCITY DISTRIBUTION FOR AN ISO-THERMAL OR SMALL TEMPERATURE DIFFERENCE FLOW.
- CURVE (a) IS THE VELOCITY DISTRIBUTION WHEN THE WALL HEATS A LIQUID OR COOLS A GAS.
- CURVE (c) IS THE VELOCITY DISTRIBUTION WHEN THE WALL COOLS A LIQUID OR HEATS A GAS.
- THE ABOVE PRESENTED HEAT TRANSFER CORRELA-TIONS ARE ENTICING BY THEIR SIMPLICITY.
- HOWEVER, BECAUSE OF THE VELOCITY PROFILE CHANGES DUE TO HEATING OR COOLING THEY ARE NOT ACCURATE.
- THESE CORRELATIONS ARE ONLY APPLICABLE TO FULLY DEVELOPED FLOWS.
- HOWEVER, THE LENGTH OF THE ENTRANCE REGION IN A LAMINAR FLOW IS SUBSTANTIAL; IT MAY EVEN OCCUPY THE ENTIRE LENGTH OF THE TUBE.
- THE FOLLOWING CORRELATION PREDICTS THE CON-VECTION HEAT TRANSFER COEFFICIENT IN THE EN-TRANCE REGION.

$$\overline{Nu_D^{(2)}} = \frac{\overline{h_c}D}{k_f} = 3.66 + \frac{0.0668(D/L)Re_DPr}{1 + 0.04[(D/L)Re_DPr]^{2/3}}$$

PAGE 4.122

LAMINAR FLOWS IN DUCTS - HEAT TRANSFER COEFFICIENT

$$\overline{Nu_{D}} = \frac{\overline{h_{c}}D}{k_{f}} = 3.66 + \frac{0.0668(D/L)Re_{D}Pr}{1 + 0.04[(D/L)Re_{D}Pr]^{2/3}}$$

- Nu_{D} is the average nusselt number.
- ► AS THE PIPE LENGTH INCREASES, THIS CORRELATION TENDS TO 3.66.
- FLUID PROPERTIES ARE CALCULATED AT THE BULK TEMPERATURE.
- ► THIS CORRELATION IS VALID FOR:

$$\left(\frac{D}{L}\right) Re_{D} Pr < 100$$

 A BETTER CORRELATION FOR LAMINAR FLOWS (SIEDER AND TATE) IS:

$$\overline{Nu_{D}} = 1.86 Re_{D}^{1/3} Pr^{1/3} \left(\frac{D}{L}\right)^{1/3} \left(\frac{\mu_{b}}{\mu_{w}}\right)^{0.16}$$

- FLUID PROPERTIES (EXCEPT μ_{w}) ARE EVALUATED AT THE BULK TEMPERATURE.
- μ_{μ} is evaluated at the wall temperature.
- ► THE TERM, $(\mu, /\mu_{,})^{0.14}$ TAKES INTO ACCOUNT THE FACT THAT THE BOUNDARY LAYER AT THE WALL IS STRONGLY INFLUENCED BY THE TEMPERATURE DEPENDENCE OF THE VISCOSITY.
- $(\mu_b / \mu_w)^{0.14}$ APPLIES FOR HEATING AND COOLING CASES.
- ► THE EFFECT OF THE ENTRANCE LENGTH IS INCLUDED IN

THE TERM $(D/L)^{1/3}$.

LAMINAR FLOWS IN DUCTS - HEAT TRANSFER COEFFICIENT

$$\overline{Nu_{D}} = 1.86 Re_{D}^{1/3} Pr^{1/3} \left(\frac{D}{L}\right)^{1/3} \left(\frac{\mu_{b}}{\mu_{w}}\right)^{0.14}$$

► THE RANGE OF APPLICABILITY:

ł

0.48 < Pr < 16,700

$$0.0044 < \frac{\mu_b}{\mu_w} < 9.75$$
$$\left(\frac{Re_D Pr}{L/D}\right)^{\nu_3} \left(\frac{\mu_b}{\mu_w}\right)^{0.14} \ge 2$$

TURBULENT FLOWS IN DUCTS

TURBULENT FLOWS IN DUCTS.

• IT IS EXPERIMENTALLY VERIFIED THAT:

• ONE SEVENTH LAW:
$$\frac{\overline{u}}{U} = \left(\frac{y}{\delta}\right)^{1/7}$$

• BLASIUS RELATION: $\tau_{w} = 0.0228 \rho U^{2} \left(\frac{\nu}{U\delta}\right)^{1/4}$

•
$$\frac{\delta_s}{\delta}$$
 RATIO: $\frac{\delta_s}{\delta} = \frac{1}{0.0228} \left(\frac{\mu}{\rho U \delta}\right)^{3/4} \frac{u_s}{U}$

$$\frac{u_s}{u} \quad \text{RATIO:} \quad \frac{u_s}{U} = 1.878 \left(\frac{\rho U \delta}{\mu}\right)^{-1/8}$$

ESTABLISHED FOR A TURBULENT BOUNDARY LAYER ON A FLAT PLATE CAN BE EXTENDED TO FULLY DEVELOP-ED TURBULENT FLOWS IN SMOOTH TUBES.

TURBULENT FLOWS IN DUCTS - VELOCITY DISTRIBUTION TURBULENT FLOW IN DUCTS - VELOCITY DISTRIBUTION IN FULLY DEVELOPED REGION

TURBULENT FLOWS IN DUCTS - FRICTION FACTOR AND PRESSURE GRADIENT

TURBULENT FLOW IN A DUCTS - FRICTION FACTOR AND FRICTIONAL PRESSURE GRADIENT

• FRICTION FACTOR

BLASIUS CORRELATION FOR A TURBULENT FLOW ON A FLAT PLATE.

$$\tau_{w} \rightarrow \tau_{R}$$

$$\delta \rightarrow D/2$$

$$U \rightarrow U_{max} = \frac{U_{m}}{0.817}$$

► VALID FOR: $10^4 < Re_D < 5 \times 10^4$ ► IF 0.312 IS REPLACED BY 0.316 THE CORRELATION IS THEN VALID FOR:

 $10^4 < Re_D < 10^5$

$$\tau_{w} = 0.0228 \rho U^{2} \left(\frac{\nu}{U\delta}\right)^{1/4}$$

$$\tau_R = 0.039 \rho U_m^2 \left(\frac{\nu}{U_m D}\right)^{1/4}$$

$$f = \frac{0.312}{\left(\frac{U_m D}{v}\right)^{1/4}} = \frac{0.312}{Re_D^{1/4}}$$

 $Re_{D} = \frac{U_{m}}{M}$

TURBULENT FLOWS IN DUCTS - FRICTION FACTOR AND PRESSURE GRADIENT

• OTHER FRICTION CORRELATIONS

► PRANDLT CORRELATION:

$$\frac{1}{\sqrt{f}} = 2.0\log(Re\sqrt{f}) - 0.8 \qquad 3,000 < Re_D < 3.4 \times 10^6$$

► VON KARMAN CORRELATION:

$$\frac{1}{\sqrt{f}} = 2.0\log\left(\frac{D}{\varepsilon}\right) + 1.74 \qquad \frac{D}{\varepsilon}\frac{1}{Re_{D}\sqrt{f}} > 0.01$$

ε IS THE RUGOSITY OF THE TUBE WALL.

• FRICTIONAL PRESSURE DROP GRADIENT:

$$-\frac{dp}{dx} = f\frac{1}{2}\rho U_m^2 \frac{1}{D}$$

TURBULENT FLOWS IN DUCTS - HEAT TRANSFER COEFFICIENT

TURBULENT FLOWS IN DUCTS - CONVECTION HEAT TRANSFER COEFFICIENT

• HEAT TRANSFER COEFFICIENT ESTABLISHED FOR A FLAT PLATE:

$$h = \frac{\frac{\tau_w c_p}{U}}{1 + \frac{u_s}{U}(Pr - 1)}$$

J.

ų.

WILL BE APPLIED TO TURBULENT FLOWS IN PIPES WITH SOME MODIFICATIONS.

TURBULENT FLOWS IN DUCTS - HEAT TRANSFER COEFFICIENT

(CONVECTION HEAT TRANSFER COEFFICIENT)

$$Nu_{D} = \frac{0.0396 Re_{D}^{3/4} Pr}{1 + 2.44 Re_{D}^{-1/8} (Pr-1)}$$

- THIS CORRELATION WORKS REASONABLY WELL.
- IT IS BETTER TO REPLACE:

2.44 by
$$1.5 Pr^{-1/6}$$

i.e.,

đ

$$Nu_{D} = \frac{0.0396 Re_{D}^{3/4} Pr}{1 + 1.5 Pr^{-1/6} Re_{D}^{-1/8} (Pr - 1)}$$

- FLUID PROPERTIES ARE DETERMINED AT THE BULK FLUID TEMPERATURE.
- ▶ *Pr* NUMBER SHOULD BE CLOSE TO 1.

TURBULENT FLOWS IN DUCTS - HEAT TRANSFER COEFFICIENT

- OTHER CONVECTION HEAT TRANSFER CORRELA-TIONS FOR TURBULENT FLOWS IN PIPES.
 - IF $(t_w t_b)$ IS LESS THAN 6 °C FOR LIQUIDS OR 60 °C FOR GASES, USE THE FOLLOWING DITTIUS-BOELTER CORRELATION:

$$Nu_{D} = 0.023 Re_{D}^{0.8} Pr^{n}$$

n = 0.4 FOR HEATING,

n = 0.3 FOR COOLING.

ų

- FLUID PROPERTIES ARE DETERMINED AT THE BULK TEMPERATURE.
- RANGE OF APPLICABILITY:

$$0.7 < Pr < 160$$
$$Re_{D} > 10,000$$
$$\frac{L}{D} > 60$$

TURBULENT FLOWS IN DUCTS - HEAT TRANSFER COEFFICIENT

- OTHER CONVECTION HEAT TRANSFER CORRELA-TIONS FOR TURBULENT FLOWS IN PIPES.
 - IF $(t_w t_b)$ IS HIGHER THAN 6 °C FOR LIQUIDS OR 60 °C FOR GASES, USE:

$$Nu_{D} = 0.027 Re_{D}^{0.8} Pr^{1/3} \left(\frac{\mu_{b}}{\mu_{w}}\right)^{0.14}$$

- ALL FLUID PROPERTIES ARE CALCULATED AT THE BULK FLUID TEMPERATURE, EXCEPT $\mu_{\rm w}$ which is evaluated at the wall temperature.
- RANGE OF APPLICABILITY:

0.7 < Pr < 16,700 $Re_{D} > 10,000$ $\frac{L}{D} > 60$

TURBULENT FLOWS IN DUCTS - HEAT TRANSFER COEFFICIENT

- OTHER CONVECTION HEAT TRANSFER CORRELA-TIONS FOR TURBULENT FLOWS IN PIPES.
 - THE FOLLOWING CORRELATION APPLIES TO ROUGH WALL PIPES (QUITE ACCURATE):

$$Nu_{D} = \frac{Re_{D}Pr}{X} \left(\frac{f}{8}\right) \left(\frac{\mu_{b}}{\mu_{w}}\right)^{n}$$
$$X = 1.07 + 12.7 \left(Pr^{2/3} - 1\right) \left(\frac{f}{8}\right)^{1/2}$$

- FOR LIQUIDS:

n = 0.11 FOR HEATING,

n = 0.25 for cooling.

- FOR GASES: n = 0.

- RANGE OF APPLICABILITY:

 $10^{4} < Re_{D} < 5.\times10^{6}$ $2 < Pr < 140 \sim 5\% \ Error$ $0.5 < Pr < 2,000 \sim 10\% \ Error$ $0.08 < \frac{\mu_{b}}{\mu_{w}} < 40$ - ALL PHYSICAL PROPERTIES, EXCEPT μ_{w} ARE EVALUAT-

- ALL PHYSICAL PROPERTIES, EXCEPT μ ARE EVALUAT ED AT THE FLUID BULK TEMPERATURE.

- μ_{w} is evaluated at the wall temperature.

- f is determined by using an ad hoc correlation.

TURBULENT FLOWS IN DUCTS - HEAT TRANSFER COEFFICIENT

- THE CORRELATIONS OBTAINED FOR CIRCULAR TUBES ON:
 - FRICTION FACTORS,

ч

- FRICTIONAL PRESSURE GRADIENT, AND
- CONVECTION HEAT TRANSFER COEFFICIENT

CAN BE APPLIED TO NON CIRCULAR TUBES BY REP-LACING THE DIAMETER (D) APPEARING IN THESE CORRELATIONS BY THE HYDRAULIC DIAMETER DE-FINED AS:

$$D_h = \frac{4 \times \text{FLOW SECTION}}{\text{WETTED PERIMETER}} = \frac{4A}{P}$$

► FOR EXAMPLE, THE HYDRAULIC DIAMETER OF AN ANNU-LAR FLOW SECTION WITH INNER DIAMETER D_1 AND OUT-ER DIAMETER D_2 IS:

$$D_{h} = \frac{4\frac{\pi}{4}(D_{2}^{2} - D_{1}^{2})}{\pi(D_{2} + D_{1})} = D_{2} - D_{1}$$

END CONVECTION

PAGE 4.136